Assessment of dynamic modulus prediction models in fatigue cracking estimation

被引:0
|
作者
Konstantina Georgouli
Christina Plati
Andreas Loizos
机构
[1] National Technical University of Athens,Laboratory of Pavement Engineering
来源
Materials and Structures | 2016年 / 49卷
关键词
Dynamic modulus; Fatigue cracking; Prediction models; Sensitivity analysis;
D O I
暂无
中图分类号
学科分类号
摘要
The dynamic modulus (E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{*}$$\end{document}) of Hot Mix Asphalt (HMA) mixtures is a key input parameter in the Mechanistic-Empirical (M-E) pavement design and analysis processes for the prediction of fatigue and rutting damage. The determination of E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{*}$$\end{document} in the laboratory requires specialized equipment and is an overall time consuming procedure. With this in mind, various prediction models have been developed over the years for the estimation of the E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{*}$$\end{document}, based on the volumetric properties of the HMA and the binder properties. Flexible pavement design processes require, amongst others, an accurate prediction of the fatigue behavior of the asphalt mixtures. With regards to M-E pavement design, a fatigue model to predict the number of load repetitions to fatigue cracking as a function of the tensile strain and the E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{*}$$\end{document} of the asphalt mixture is considered. Taking the above into consideration the aim of the present research study is the comparative assessment of the most widely used E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{*}$$\end{document} prediction models and their impact on the predicted fatigue cracking in the context of M-E pavement design in comparison. Further, the impact of an E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{*}$$\end{document} prediction model developed through calibration process is also investigated. For this purpose, an asphalt mixture and a pavement structure often implemented in highways of the national transportation network, was selected and fatigue cracking was calculated utilizing both, predicted E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{*}$$\end{document} and laboratory determined values. Analysis showed that the large bias in the E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{*}$$\end{document} prediction models is compensated to a certain extend in the final output which is the fatigue cracking. Relevant results from the sensitivity analysis are presented in the paper.
引用
收藏
页码:5007 / 5019
页数:12
相关论文
共 50 条
  • [41] Comparing Machine Learning Models with Witczak NCHRP 1-40D Model for Hot-Mix Asphalt Dynamic Modulus Prediction
    Uwanuakwa, Ikenna D.
    Busari, Ayobami
    Ali, Shaban Ismael Albrka
    Hasan, Mohd Rosli Mohd
    Sani, Ashiru
    Abba, S., I
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (10) : 13579 - 13591
  • [42] Comparing Machine Learning Models with Witczak NCHRP 1-40D Model for Hot-Mix Asphalt Dynamic Modulus Prediction
    Ikenna D. Uwanuakwa
    Ayobami Busari
    Shaban Ismael Albrka Ali
    Mohd Rosli Mohd Hasan
    Ashiru Sani
    S. I. Abba
    Arabian Journal for Science and Engineering, 2022, 47 : 13579 - 13591
  • [43] Influence of PSD Estimation Parameters on Fatigue Life Prediction in Spectral Method
    Kalavsky, Adam
    Nieslony, Adam
    Hunady, Robert
    MATERIALS, 2023, 16 (03)
  • [44] Mechanistic-empirical analysis of asphalt pavement fatigue cracking under vehicular dynamic loads
    Zhao, Jingnan
    Wang, Hao
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 284
  • [45] Artificial Intelligence-Based Model for the Prediction of Dynamic Modulus of Stone Mastic Asphalt
    Thanh-Hai Le
    Hoang-Long Nguyen
    Binh Thai Pham
    May Huu Nguyen
    Cao-Thang Pham
    Ngoc-Lan Nguyen
    Tien-Thinh Le
    Hai-Bang Ly
    APPLIED SCIENCES-BASEL, 2020, 10 (15):
  • [46] Evaluation of fatigue cracking performance of asphalt mixtures under heavy static and dynamic aircraft loads
    Guercio, Maria Chiara
    Mehta, Yusuf
    McCarthy, Leslie Myers
    CONSTRUCTION AND BUILDING MATERIALS, 2015, 95 : 813 - 819
  • [47] Prediction of the Dynamic Modulus of Granular Crumb Rubber Modified Asphalt Concrete based on Micromechanics
    Wang Zhi-chen
    Guo Nai-sheng
    Zhao Ying-hua
    INTERNATIONAL WORKSHOP ON ENERGY AND ENVIRONMENT IN THE DEVELOPMENT OF SUSTAINABLE ASPHALT PAVEMENTS, PROCEEDINGS, 2010, : 177 - 182
  • [48] Development of Dynamic Modulus Prediction Model Using Artificial Neural Networks for Colombian Mixtures
    Acharjee, Prashanta Kumar
    Souliman, Mena I.
    Freyle, Freya
    Fuentes, Luis
    JOURNAL OF TRANSPORTATION ENGINEERING PART B-PAVEMENTS, 2024, 150 (01)
  • [49] Robust parameter estimation in nonlinear dynamic process models
    Rodríguez-Fernández, M
    Alonso, AA
    Banga, JR
    EUROPEAN SYMPOSIUM ON COMPUTER-AIDED PROCESS ENGINEERING-15, 20A AND 20B, 2005, 20a-20b : 37 - 42