Multi-Regge kinematics and the moduli space of Riemann spheres with marked points

被引:0
作者
Vittorio Del Duca
Stefan Druc
James Drummond
Claude Duhr
Falko Dulat
Robin Marzucca
Georgios Papathanasiou
Bram Verbeek
机构
[1] Institute for Theoretical Physics,School of Physics & Astronomy
[2] ETH Zürich,Center for Cosmology, Particle Physics and Phenomenology (CP3)
[3] University of Southampton,SLAC National Accelerator Laboratory
[4] Theoretical Physics Department,undefined
[5] CERN,undefined
[6] Université catholique de Louvain,undefined
[7] Stanford University,undefined
来源
Journal of High Energy Physics | / 2016卷
关键词
Supersymmetric gauge theory; Gauge Symmetry; Extended Supersymmetry;
D O I
暂无
中图分类号
学科分类号
摘要
We show that scattering amplitudes in planar N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} Super Yang-Mills in multi-Regge kinematics can naturally be expressed in terms of single-valued iterated integrals on the moduli space of Riemann spheres with marked points. As a consequence, scattering amplitudes in this limit can be expressed as convolutions that can easily be computed using Stokes’ theorem. We apply this framework to MHV amplitudes to leading-logarithmic accuracy (LLA), and we prove that at L loops all MHV amplitudes are determined by amplitudes with up to L + 4 external legs. We also investigate non-MHV amplitudes, and we show that they can be obtained by convoluting the MHV results with a certain helicity flip kernel. We classify all leading singularities that appear at LLA in the Regge limit for arbitrary helicity configurations and any number of external legs. Finally, we use our new framework to obtain explicit analytic results at LLA for all MHV amplitudes up to five loops and all non-MHV amplitudes with up to eight external legs and four loops.
引用
收藏
相关论文
共 227 条
[1]  
Drummond JM(2007)Magic identities for conformal four-point integrals JHEP 01 064-undefined
[2]  
Henn J(2007)The four-loop planar amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory Phys. Rev. D 75 085010-undefined
[3]  
Smirnov VA(2007)Maximally supersymmetric planar Yang-Mills amplitudes at five loops Phys. Rev. D 76 125020-undefined
[4]  
Sokatchev E(2007)Gluon scattering amplitudes at strong coupling JHEP 06 064-undefined
[5]  
Bern Z(2008)Conformal properties of four-gluon planar amplitudes and Wilson loops Nucl. Phys. B 795 385-undefined
[6]  
Czakon M(2008)MHV amplitudes in N = 4 super Yang-Mills and Wilson loops Nucl. Phys. B 794 231-undefined
[7]  
Dixon LJ(2009)Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory JHEP 05 046-undefined
[8]  
Kosower DA(2008)On planar gluon amplitudes/Wilson loops duality Nucl. Phys. B 795 52-undefined
[9]  
Smirnov VA(2010)Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes Nucl. Phys. B 826 337-undefined
[10]  
Bern Z(2005)Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond Phys. Rev. D 72 085001-undefined