Sparse bounds for pseudodifferential operators

被引:1
作者
David Beltran
Laura Cladek
机构
[1] Basque Center for Applied Mathematics (BCAM),Department of Mathematics
[2] University of California,undefined
来源
Journal d'Analyse Mathématique | 2020年 / 140卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove sparse bounds for pseudodifferential operators associated to Hörmander symbol classes. Our sparse bounds are sharp up to the endpoint and rely on a single scale analysis. As a consequence, we deduce a range of weighted estimates for pseudodifferential operators. The results naturally apply to the context of oscillatory Fourier multipliers, with applications to dispersive equations and oscillatory convolution kernels.
引用
收藏
页码:89 / 116
页数:27
相关论文
共 85 条
[1]  
Beltran D(2019)Control of pseudodifferential operators by maximal functions via weighted inequalities Trans. Amer. Math. Soc. 371 3117-3143
[2]  
Beltran D(2018)A Fefferman—Stein inequality for the Carleson operator Rev. Mat. Iberoam. 34 221-244
[3]  
Beltran D(2017)Subdyadic square functions and applications to weighted harmonic analysis Adv. Math. 307 72-99
[4]  
Bennett J(2017)Sparse bilinear forms for Bochner Riesz multipliers and applications Trans. London Math. Soc. 4 110-128
[5]  
Benea C(2016)Sharp weighted norm estimates beyond Calderón—Zygmund theory Anal. PDE 9 1079-1113
[6]  
Bernicot F(2017)A note on weighted bounds for singular operators with nonsmooth kernels Studia Math. 236 245-269
[7]  
Luque T(1972)A class of bounded pseudo-differential operators Proc. Nat. Acad. Sci. USA 69 1185-1187
[8]  
Bernicot F(1985)Conditionally convergent series of linear operators on L Trans. Amer. Math. Soc. 287 673-680
[9]  
Frey D(1988)-spaces and L Proc. London Math. Soc. 57 481-510
[10]  
Petermichl S(2000)-estimates for pseudodifferential operators Q. J. Math. 51 155-167