Boundary Integral Operators for the Heat Equation in Time-Dependent Domains

被引:0
作者
Rahel Brügger
Helmut Harbrecht
Johannes Tausch
机构
[1] University of Basel,Departement Mathematik und Informatik
[2] Spiegelgasse 1,Department of Mathematics
[3] Southern Methodist University,undefined
来源
Integral Equations and Operator Theory | 2022年 / 94卷
关键词
Heat equation; boundary integral equation; Time-dependent moving boundary; Non-cylindrical domain; 35K20; 31B35; 35S05; 47G30;
D O I
暂无
中图分类号
学科分类号
摘要
This article provides a functional analytical framework for boundary integral equations of the heat equation in time-dependent domains. More specifically, we consider a non-cylindrical domain in space-time that is the C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document}-diffeomorphic image of a cylinder, i.e., the tensor product of a time interval and a fixed domain in space. On the non-cylindrical domain, we introduce Sobolev spaces, trace lemmata and provide the mapping properties of the layer operators. Here it is critical that the Neumann trace requires a correction term for the normal velocity of the moving boundary. Therefore, one has to analyze the situation carefully.
引用
收藏
相关论文
共 15 条
[1]  
Brügger R(2021)On the numerical solution of a time-dependent shape optimization problem for the heat equation SIAM J. Control Optim. 59 931-953
[2]  
Harbrecht H(1998)On the numerical solution of an inverse boundary value problem for the heat equation Inverse Prob. 14 853-867
[3]  
Tausch J(1990)Boundary integral operators for the heat equation Integr. Equ. Oper. Theory 13 498-552
[4]  
Chapko R(2016)Analysis of the domain mapping method for elliptic diffusion problems on random domains Numer. Math. 134 823-856
[5]  
Kress R(1995)The method of layer potentials for the heat equation in time-varying domains Mem. Am. Math. Soc. 114 545-420
[6]  
Yoon J-R(1996) solvability and representation by caloric layer potentials in time-varying domains Ann. Math. 144 349-2968
[7]  
Costabel M(2019)Nyström method for BEM of the heat equation with moving boundaries Adv. Comput. Math. 45 2953-undefined
[8]  
Harbrecht H(undefined)undefined undefined undefined undefined-undefined
[9]  
Peters M(undefined)undefined undefined undefined undefined-undefined
[10]  
Siebenmorgen M(undefined)undefined undefined undefined undefined-undefined