Design and dispatch optimization of a solid-oxide fuel cell assembly for unconventional oil and gas production

被引:0
|
作者
Gladys A. Anyenya
Robert J. Braun
Kyung Jae Lee
Neal P. Sullivan
Alexandra M. Newman
机构
[1] Department of Mechanical Engineering,Department of Petroleum Engineering
[2] Colorado School of Mines,undefined
[3] University of Houston,undefined
来源
Optimization and Engineering | 2018年 / 19卷
关键词
Solid oxide fuel cell applications; Nonlinear optimization; Solid oxide fuel cell system model; Geothermic Fuel Cell; In-situ oil shale processing; KNITRO; Combined heat-and-power systems;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents design and dispatch optimization models of a solid-oxide fuel cell (SOFC) assembly for unconventional oil and gas production. Fuel cells are galvanic cells which electrochemically convert hydrocarbon-based fuels to electricity. The Geothermic Fuel Cell (GFC) concept involves utilizing heat from fuel cells during electricity generation to provide thermal energy required to pyrolyze kerogen into a mixture of oil, hydrocarbon gas and carbon-rich shale coke. We formulate a continuous, non-convex nonlinear program (NLP) in A Mathematical Programming Language (AMPL) to analyze the techno-economic characteristics of the GFC system. The problem is separated into a design model (D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({{\mathcal {D}}})$$\end{document} and a dispatch model (O)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({{\mathcal {O}}})$$\end{document}. The GFC design problem determines the size and configuration of a single heater well. Specifically, we optimize the heater length and number of SOFC stacks in each assembly such that the maximum volume of oil shale is heated per well. Using the resulting design from (D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({{\mathcal {D}}})$$\end{document}, the dispatch model (O)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({{\mathcal {O}}})$$\end{document} determines daily GFC operating conditions through variation in electric current, fuel utilization, and stoics of excess air. We optimize the system operating costs and the combined-heat-and-power efficiency, subject to geology heating demands, auxiliary component electric power demands and GFC system performance characteristics. Solutions to the design and dispatch problems are obtained using the IPOPT and KNITRO solvers. A case study shows that the optimal well-head cost of oil and gas produced using the GFC technology is about $39 bbl-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}, which is comparable to that from other unconventional crude oil extraction techniques. The optimal dispatch strategy results in a maximum heating efficiency of 43% and a combined-heat-and-power efficiency of 79%. The Geothermic Fuel Cell’s performance is better than current in situ upgrading technologies that rely on electricity supplied from the grid at generation-and-transmission efficiencies near 33%.
引用
收藏
页码:1037 / 1081
页数:44
相关论文
共 50 条
  • [1] Design and dispatch optimization of a solid-oxide fuel cell assembly for unconventional oil and gas production
    Anyenya, Gladys A.
    Braun, Robert J.
    Lee, Kyung Jae
    Sullivan, Neal P.
    Newman, Alexandra M.
    OPTIMIZATION AND ENGINEERING, 2018, 19 (04) : 1037 - 1081
  • [2] Numerical characterization of a microscale solid-oxide fuel cell
    Sun, Chen-li
    Ou, Hsien-Chih
    JOURNAL OF POWER SOURCES, 2008, 185 (01) : 363 - 373
  • [3] OPTIMIZATION OF A SINGLE-CELL SOLID-OXIDE FUEL CELL USING COMPUTATIONAL FLUID DYNAMICS
    Sembler, William J.
    Kumar, Sunil
    PROCEEDINGS OF THE ASME 8TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY 2010, VOL 2, 2010, : 1 - 14
  • [4] Direct oxidation of hydrocarbons in a solid-oxide fuel cell
    Park, SD
    Vohs, JM
    Gorte, RJ
    NATURE, 2000, 404 (6775) : 265 - 267
  • [5] Optimization of a single-cell solid-oxide fuel cell using computational fluid dynamics
    United States Merchant Marine Academy, Kings Point, NY, United States
    不详
    ASME Int. Conf. Fuel Cell Sci., Eng. Technol., FUELCELL, 1600, (1-14):
  • [6] Optimization of a Single-Cell Solid-Oxide Fuel Cell Using Computational Fluid Dynamics
    Sembler, William J.
    Kumar, Sunil
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2011, 8 (02):
  • [7] Dynamics and Control of a Tubular Solid-Oxide Fuel Cell
    Hajimolana, S. Ahmad
    Soroush, Masoud
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (13) : 6112 - 6125
  • [8] Direct oxidation of hydrocarbons in a solid-oxide fuel cell
    Seungdoo Park
    John M. Vohs
    Raymond J. Gorte
    Nature, 2000, 404 : 265 - 267
  • [9] Energy efficiency of a microtubular solid-oxide fuel cell
    Suzuki, Toshio
    Sugihara, Shinichi
    Hamamoto, Koichi
    Yamaguchi, Toshiaki
    Fujishiro, Yoshinobu
    JOURNAL OF POWER SOURCES, 2011, 196 (13) : 5485 - 5489
  • [10] Adjoint method for solid-oxide fuel cell simulations
    Kapadia, S.
    Anderson, W. K.
    Elliott, L.
    Burdyshaw, C.
    JOURNAL OF POWER SOURCES, 2007, 166 (02) : 376 - 385