Scotogenic neutrino masses with gauged matter parity and gauge coupling unification

被引:0
作者
A. E. Cárcamo Hernández
Chandan Hati
Sergey Kovalenko
José W. F. Valle
Carlos A. Vaquera-Araujo
机构
[1] Universidad Técnica Federico Santa María,Physik Department T70
[2] Centro Científico-Tecnológico de Valparaíso,Departamento de Ciencias Físicas
[3] Millennium Institute for Subatomic physics at high energy frontier — SAPHIR,Departamento de Física, DCI, Campus León
[4] Technische Universität München,undefined
[5] Universidad Andres Bello,undefined
[6] AHEP Group,undefined
[7] Institut de Física Corpuscular — CSIC/Universitat de València,undefined
[8] Universidad de Guanajuato,undefined
[9] Consejo Nacional de Ciencia y Tecnología,undefined
[10] Dual CP Institute of High Energy Physics,undefined
来源
Journal of High Energy Physics | / 2022卷
关键词
Beyond Standard Model; Gauge Symmetry; Neutrino Physics;
D O I
暂无
中图分类号
学科分类号
摘要
Building up on previous work we propose a Dark Matter (DM) model with gauged matter parity and dynamical gauge coupling unification, driven by the same physics responsible for scotogenic neutrino mass generation. Our construction is based on the extended gauge group SU(3)c ⊗ SU(3)L ⊗ U(1)X ⊗ U(1)N, whose spontaneous breaking leaves a residual conserved matter parity, MP, stabilizing the DM particle candidates of the model. The key role is played by Majorana SU(3)L-octet leptons, allowing the successful gauge coupling unification and a one-loop scotogenic neutrino mass generation. Theoretical consistency allows for a plethora of new particles at the ≲ O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O} $$\end{document}(10) TeV scale, hence accessible to future collider and low-energy experiments.
引用
收藏
相关论文
共 41 条
[1]  
Alves A(2017) 3 Phys. Lett. B 772 825-undefined
[2]  
Arcadi G(2017)3 Int. J. Mod. Phys. A 32 1750038-undefined
[3]  
Dong PV(2021)1 Eur. Phys. J. C 81 758-undefined
[4]  
Duarte L(2019)′ JHEP 08 051-undefined
[5]  
Queiroz FS(2015) 3 Nucl. Phys. B 897 757-undefined
[6]  
Valle JWF(2018)3 Adv. High Energy Phys. 2018 9132381-undefined
[7]  
Kakizaki M(2016)1 Phys. Lett. B 762 432-undefined
[8]  
Santa A(2009)3 JHEP 01 059-undefined
[9]  
Seto O(2010)3 Nucl. Phys. B 838 119-undefined
[10]  
Abada A(2012)1 JHEP 04 094-undefined