On subgroups of finite p-groups

被引:0
作者
Yakov Berkovich
Zvonimir Janko
机构
[1] University of Haifa Mount Carmel,Department of Mathematics
[2] University of Heidelberg,Mathematical Institute
来源
Israel Journal of Mathematics | 2009年 / 171卷
关键词
Maximal Subgroup; Quotient Group; Abelian Subgroup; Cyclic Subgroup; Maximal Class;
D O I
暂无
中图分类号
学科分类号
摘要
In §2, we prove that if a 2-group G and all its nonabelian maximal sub-groups are two-generator, then G is either metacyclic or minimal non-abelian. In §3, we consider a similar question for p > 2. In §4 the 2-groups all of whose minimal nonabelian subgroups have order 16 and a cyclic subgroup of index 2, are classified. It is proved, in §5, that if G is a nonmetacyclic two-generator 2-group and A, B, C are all its maximal subgroups with d(A) ≤ d(B) ≤ d(C), then d(C) = 3 and either d(A) = d(B) = 3 (this occurs if and only if G/G′ has no cyclic subgroup of index 2) or else d(A) = d(B) = 2. Some information on the last case is obtained in Theorem 5.3.
引用
收藏
页码:29 / 49
页数:20
相关论文
共 11 条
[1]  
Berkovich Y.(2002)On subgroups and epimorphic images of finite p-groups Journal of Algebra 248 472-553
[2]  
Berkovich Y.(2006)Short proofs of some basic characterization theorems of finite p-group theory Glasnik Matematicki 41 239-258
[3]  
Berkovich Y.(1990)On the number of subgroups of given order in a p-group of exponent p Proceedings of the American Mathematical Society 109 875-879
[4]  
Berkovich Y.(1998)On abelian subgroups of p-groups Journal of Algebra 199 262-280
[5]  
Berkovich Y.(2006)Structure of finite groups with given subgroups Contemporary Mathematics 402 13-93
[6]  
Janko Z.(1958)On a special class of p-groups Acta Mathematica 100 45-92
[7]  
Blackburn N.(1961)Generalizations of certain elementary theorems on p-groups Proceedings of the London Mathematical Society 11 1-22
[8]  
Blackburn N.(2007)On finite nonabelian 2-groups all of whose minimal nonabelian subgroups are of exponent 4 Journal of Algebra 315 801-808
[9]  
Janko Z.(2008)Finite 2-groups with exactly one nonmetacyclic maximal subgroup Israel Journal of Mathematics 166 313-347
[10]  
Janko Z.(1947)Das “schiefe Produkt” in der Gruppentheorie mit Anwendung auf die endlichen nichtkommutativen Gruppen mit lauter kommutativen echten Untergruppen und die Ordnungzahlen, zu denen nur kommutative Gruppen Gehören Commentarii Mathematici Helvetici 20 225-267