Remarks on an integral functional driven by sub-fractional Brownian motion

被引:0
作者
Guangjun Shen
Litan Yan
机构
[1] East China University of Science and Technology,Department of Mathematics
[2] Anhui Normal University,Department of Mathematics
[3] Donghua University,Department of Mathematics
来源
Journal of the Korean Statistical Society | 2011年 / 40卷
关键词
60G15; 60J55; 60H05; Sub-fractional Brownian motion; Local time; Self-intersection local time; -variation; Stochastic area integrals;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the functionals \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{l}{A_1}\left( {t,x} \right) = \int\limits_0^t {{1_{\left[ {0,\infty } \right)}}} \left( {\chi - S_s^H} \right)ds,\\{A_2}\left( {t,x} \right) = \int\limits_0^t {{1_{\left[ {0,\infty } \right)}}\left( {\chi - S_s^H} \right)} {s^{2H - 2}}ds,\end{array}$$\end{document} where (StH)0≤t≤T is a one-dimension sub-fractional Brownian motion with index H ∈ (0, 1). It shows that there exists a constant pH ∈ (1, 2) such that p-variation of the process Aj(t, StH) − ∫0tℒj(s, SsH)dSsH (j = 1, 2) is equal to 0 if p > pH, where ℒj, j= 1, 2, are the local time and weighted local time of SH, respectively. This extends the classical results for Brownian motion.
引用
收藏
页码:337 / 346
页数:9
相关论文
共 50 条
  • [21] Asymptotic behavior of weighted cubic variation of sub-fractional brownian motion
    Kuang, Nenghui
    Xie, Huantian
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (01) : 215 - 229
  • [22] REMARKS ON SUB-FRACTIONAL BESSEL PROCESSES
    Shen Guangjun
    Chen Chao
    Yam Litan
    [J]. ACTA MATHEMATICA SCIENTIA, 2011, 31 (05) : 1860 - 1876
  • [23] REMARKS ON SUB-FRACTIONAL BESSEL PROCESSES
    申广君
    陈超
    闫理坦
    [J]. ActaMathematicaScientia, 2011, 31 (05) : 1860 - 1876
  • [24] Pricing geometric asian power options in the sub-fractional brownian motion environment *
    Wang, Wei
    Cai, Guanghui
    Tao, Xiangxing
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 145
  • [25] Continuity in law with respect to the Hurst index of some additive functionals of sub-fractional Brownian motion
    Ait Ouahra, M.
    Sghir, A.
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2017, 35 (04) : 677 - 690
  • [26] Instrumental variable estimation for stochastic differential equations linear in drift parameter and driven by a sub-fractional Brownian motion
    Rao, B. L. S. Prakasa
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2018, 36 (04) : 600 - 612
  • [27] Fuzzy simulation of European option pricing using sub-fractional Brownian motion
    Bian, Liu
    Li, Zhi
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 153
  • [28] Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk
    Nenghui Kuang
    Huantian Xie
    [J]. Annals of the Institute of Statistical Mathematics, 2015, 67 : 75 - 91
  • [29] Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk
    Kuang, Nenghui
    Xie, Huantian
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2015, 67 (01) : 75 - 91
  • [30] STOCHASTIC INTEGRAL FOR NON-ADAPTED PROCESSES RELATED TO SUB-FRACTIONAL BROWNIAN MOTION WHEN H > 1/2
    Amel, Belhadj
    Abdeldjebbar, Kandouci
    Angelika, Bouchentouf Amina
    [J]. BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2021, 16 (02): : 165 - 176