Remarks on an integral functional driven by sub-fractional Brownian motion

被引:0
|
作者
Guangjun Shen
Litan Yan
机构
[1] East China University of Science and Technology,Department of Mathematics
[2] Anhui Normal University,Department of Mathematics
[3] Donghua University,Department of Mathematics
来源
Journal of the Korean Statistical Society | 2011年 / 40卷
关键词
60G15; 60J55; 60H05; Sub-fractional Brownian motion; Local time; Self-intersection local time; -variation; Stochastic area integrals;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the functionals \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{l}{A_1}\left( {t,x} \right) = \int\limits_0^t {{1_{\left[ {0,\infty } \right)}}} \left( {\chi - S_s^H} \right)ds,\\{A_2}\left( {t,x} \right) = \int\limits_0^t {{1_{\left[ {0,\infty } \right)}}\left( {\chi - S_s^H} \right)} {s^{2H - 2}}ds,\end{array}$$\end{document} where (StH)0≤t≤T is a one-dimension sub-fractional Brownian motion with index H ∈ (0, 1). It shows that there exists a constant pH ∈ (1, 2) such that p-variation of the process Aj(t, StH) − ∫0tℒj(s, SsH)dSsH (j = 1, 2) is equal to 0 if p > pH, where ℒj, j= 1, 2, are the local time and weighted local time of SH, respectively. This extends the classical results for Brownian motion.
引用
收藏
页码:337 / 346
页数:9
相关论文
共 50 条
  • [1] Remarks on an integral functional driven by sub-fractional Brownian motion
    Shen, Guangjun
    Yan, Litan
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2011, 40 (03) : 337 - 346
  • [2] A DECOMPOSITION OF SUB-FRACTIONAL BROWNIAN MOTION
    Ruiz de Chavez, J.
    Tudor, C.
    MATHEMATICAL REPORTS, 2009, 11 (01): : 67 - 74
  • [3] AN EXTENSION OF SUB-FRACTIONAL BROWNIAN MOTION
    Sghir, Aissa
    PUBLICACIONS MATEMATIQUES, 2013, 57 (02) : 497 - 508
  • [4] On the Wiener integral with respect to a sub-fractional Brownian motion on an interval
    Tudor, Constantin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (01) : 456 - 468
  • [5] On some maximal and integral inequalities for sub-fractional Brownian motion
    Rao, B. L. S. Prakasa
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2017, 35 (02) : 279 - 287
  • [6] Stochastic delay evolution equations driven by sub-fractional Brownian motion
    Zhi Li
    Guoli Zhou
    Jiaowan Luo
    Advances in Difference Equations, 2015
  • [7] Stochastic delay evolution equations driven by sub-fractional Brownian motion
    Li, Zhi
    Zhou, Guoli
    Luo, Jiaowan
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [8] An integral functional driven by fractional Brownian motion
    Sun, Xichao
    Yan, Litan
    Yu, Xianye
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (07) : 2249 - 2285
  • [9] The incre ents of a sub-fractional Brownian motion
    El-Nouty, Charles
    2016 INTERNATIONAL CONFERENCE ON INFORMATION AND DIGITAL TECHNOLOGIES (IDT), 2016, : 95 - 100
  • [10] Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems
    Bojdecki, Tomasz
    Gorostiza, Luis G.
    Talarczyk, Anna
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 : 161 - 172