On teaching sets for 2-threshold functions of two variables

被引:0
作者
Zamaraeva E.M. [1 ]
机构
[1] Lobachevsky Nizhny Novgorod State University, pr. Gagarina 23, Nizhny Novgorod
关键词
machine learning; teaching dimension; teaching set; threshold function;
D O I
10.1134/S199047891701015X
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider k-threshold functions of n variables, i.e. the functions representable as the conjunction of k threshold functions. For n = 2, k = 2, we give upper bounds for the cardinality of the minimal teaching set depending on the various properties of the function. © 2017, Pleiades Publishing, Ltd.
引用
收藏
页码:130 / 144
页数:14
相关论文
共 9 条
[1]  
Zolotykh N.Y., Shevchenko V.N., Estimating the Complexity of Deciphering a Threshold Function in a k-Valued Logic, Zh. Vychisl. Mat. Mat. Fiz., 39, 2, pp. 346-352, (1999)
[2]  
Shevchenko V.N., Zolotykh N.Y., On the Complexity of Deciphering the Threshold Functions of k-Valued Logic, Dokl. Akad. Nauk, 362, 5, pp. 606-608, (1998)
[3]  
Alekseyev M.A., Basova M.G., Zolotykh N.Y., On the Minimal Teaching Sets of Two-Dimensional Threshold Functions, SIAMJ. DiscreteMath., 29, 1, pp. 157-165, (2015)
[4]  
Anthony M., Brightwell G., Shawe-Taylor J., On Specifying Boolean Functions by Labelled Examples, Discrete Appl. Math., 61, 1, pp. 1-25, (1995)
[5]  
Bultman W.J., Maass W., Fast Identification of Geometric Objects with Membership Queries, Inform. Comput., 118, 1, pp. 48-64, (1995)
[6]  
Chirkov A.Y., Zolotykh N.Y., On the Number of Irreducible Points in Polyhedra, Graphs Combin., 32, 5, pp. 1789-1803, (2016)
[7]  
Shevchenko V.N., Zolotykh N.Y., Lower Bounds for the Complexity of Learning Half-Spaces with Membership Queries, Algorithmic Learning Theory, pp. 61-71, (1998)
[8]  
Trainin J., An Elementary Proof of Pick’s Theorem, Math. Gaz., 91, 522, pp. 536-540, (2007)
[9]  
Zamaraeva E., On Teaching Sets of k-Threshold Functions, Inform. and Comput., 251, pp. 301-313, (2016)