3 definitions of BF theory on homology 3-spheres

被引:0
作者
Matthias Blau
Mbambu Kakona
George Thompson
机构
[1] University of Bern,Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics
[2] University of Rwanda,East African Institute for Fundamental Research (EAIFR)
[3] Abdus Salam International Centre for Theoretical Physics,undefined
来源
Journal of High Energy Physics | / 2023卷
关键词
Chern-Simons Theories; Topological Field Theories;
D O I
暂无
中图分类号
学科分类号
摘要
3-dimensional BF theory with gauge group G (= Chern-Simons theory with non-compact gauge group TG) is a deceptively simple yet subtle topological gauge theory. Formally, its partition function is a sum/integral over the moduli space M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M} $$\end{document} of flat connections, weighted by the Ray-Singer torsion. In practice, however, this formal expression is almost invariably singular and ill-defined.
引用
收藏
相关论文
共 45 条
[1]  
Blau M(2022) 3 JHEP 08 230-undefined
[2]  
Kakona M(1978)SU( Lett. Math. Phys. 2 247-undefined
[3]  
Thompson G(1984)) Nucl. Phys. B 242 436-undefined
[4]  
Schwarz AS(1989)undefined Math. Phys. 125 417-undefined
[5]  
Schwarz AS(1991)undefined Phys. Lett. B 255 535-undefined
[6]  
Tyupkin YS(1989)undefined Nucl. Phys. B 323 113-undefined
[7]  
Horowitz G(1989)undefined Commun. Math. Phys. 121 351-undefined
[8]  
Blau M(1993)undefined Nucl. Phys. B 408 345-undefined
[9]  
Thompson G(2006)undefined JHEP 05 003-undefined
[10]  
Witten E(2013)undefined JHEP 09 033-undefined