on (B,n,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(B, n, \infty )$$\end{document}-isometric transformations

被引:0
作者
A. A. Al-Dohiman
机构
[1] Jouf University,Mathematical Analysis and Applications. Mathematics Department, College of Science
关键词
Banach space; -isometries; Isometric operator; MSC 47A05; MSC 47A10; 47A11;
D O I
10.1007/s13370-023-01095-z
中图分类号
学科分类号
摘要
In this paper, we introduce the concept of (B, n, p)-isometries when p→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\rightarrow \infty $$\end{document} and studied some of proprieties of members of this family of transformations. This concept generalizes the notion of (n, p)-isometric transformations.
引用
收藏
相关论文
共 17 条
[1]  
Agler J(1995)-isometric transformations of Hilbert space I Integr. Eqn. Oper. Theory 21 383-429
[2]  
Stankus M(1995)-isometric transformations of Hilbert space. Integr. Equ. Oper. Theory 23 1-48
[3]  
Agler J(1996)-isometric transformations of Hilbert space. Integr. Equ. Oper. Theory 24 379-421
[4]  
Stankus M(2011)-isometries on Banach spaces Math. Nachr. 284 2141-2147
[5]  
Agler J(2012)Tensor product of Funct. Anal. Approx. Comput. 4 61-67
[6]  
Stankus M(2014)-isometries III J. Oper. Theory 72 313-329
[7]  
Bayart F(2018)-isometries on metric spaces Linear Algebra Appl. 540 95-111
[8]  
Duggal BP(2015)-isometries on Hilbert spaces Asian-Eur. J. Math. 8 2-145
[9]  
Bermúdez T(2002) and Glas. Mat. 37 141-undefined
[10]  
Martinónn A(undefined)-isometric operator tuples on normed spaces undefined undefined undefined-undefined