Density of integer solutions to diagonal quadratic forms

被引:0
作者
T. D. Browning
机构
[1] University of Bristol,
来源
Monatshefte für Mathematik | 2007年 / 152卷
关键词
2000 Mathematics Subject Classification: 11G35; 11P55, 14G05; Key words: Quadratic forms, Hardy–Littlewood circle method, density of solutions, uniform upper bounds;
D O I
暂无
中图分类号
学科分类号
摘要
Let Q be a non-singular diagonal quadratic form in at least four variables. We provide upper bounds for the number of integer solutions to the equation Q = 0, which lie in a box with sides of length 2B, as B → ∞. The estimates obtained are completely uniform in the coefficients of the form, and become sharper as they grow larger in modulus.
引用
收藏
页码:13 / 38
页数:25
相关论文
共 8 条
[1]  
Browning TD(2003)Counting rational points on diagonal quadratic surfaces Quart J Math 54 11-31
[2]  
Browning TD(2005)Counting rational points on hypersurfaces J Reine Angew Math 584 83-115
[3]  
Heath-Brown DR(1980)Hybrid bounds for Dirichlet Quart J Math 31 157-167
[4]  
Heath-Brown DR(1996)-functions. II J Reine Angew Math 481 149-206
[5]  
Heath-Brown DR(2002)A new form of the circle method and its application to quadratic forms Ann Math 155 553-595
[6]  
Heath-Brown DR(1966)The density of rational points on curves and surfaces Zap Naučn Sem Leningrad Otdel Mat Inst Steklov (LOMI) 1 6-83
[7]  
Malyšev AV(1941)The weighted number of integer points lying on a surface of the second order (in Russian) Amer J Math 63 658-680
[8]  
Siegel CL(undefined)Equivalence of quadratic forms undefined undefined undefined-undefined