Three-dimensional equilibrium shapes of drops on hysteretic surfaces

被引:0
作者
Bharadwaj R. Prabhala
Mahesh V. Panchagnula
Srikanth Vedantam
机构
[1] Tennessee Technological University,Department of Mechanical Engineering
[2] Indian Institute of Technology Madras,Department of Applied Mechanics
[3] Indian Institute,Department of Engineering Design
[4] of Technology Madras,undefined
来源
Colloid and Polymer Science | 2013年 / 291卷
关键词
Wetting; Contact angle hysteresis; Surface Evolver; Pendant drop;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study equilibrium three-dimensional shapes of drops on hysteretic surfaces. We develop a function coupled with the publicly available surface energy minimization code Surface Evolver to handle contact angle hysteresis. The function incorporates a model for the mobility of the triple line into Surface Evolver. The only inputs to the model are the advancing and receding contact angles of the surface. We demonstrate this model’s versatility by studying three problems in which parts of the triple line advance while other parts either recede or remain stationary. The first problem focuses on the three-dimensional shape of a static pendant drop on a vertical surface. We predict the finite drop volume when impending sliding motion is observed. In the second problem, we examine the equilibrium shapes of coalescing sessile drops on hysteretic surfaces. Finally, we study coalescing puddles in which gravity plays a leading role in determining the equilibrium puddle shape along with hysteresis.
引用
收藏
页码:279 / 289
页数:10
相关论文
共 106 条
[1]  
Brandon S(1997)Simulated contact angle hysteresis of a three-dimensional drop on a chemically heterogeneous surface: a numerical example J Colloid Interface Sci 191 110-undefined
[2]  
Wachs A(2003)Partial wetting of chemically patterned surfaces: the effect of drop size J Colloid Interface Sci 263 237-undefined
[3]  
Marmur A(2008)Constitutive modeling of contact angle hysteresis J Colloid Interface Sci 321 393-undefined
[4]  
Brandon S(2007)Phase field modeling of hysteresis in sessile drops Phys Rev Lett 99 176102-undefined
[5]  
Haimovich N(2010)Perturbation solution of the shape of a nonaxisymmetric sessile drop Langmuir 26 1071-undefined
[6]  
Yeger E(1980)Static drop on an inclined plate: analysis by the finite element method J Colloid Interface Sci 73 76-undefined
[7]  
Marmur A(1997)Static drops on an inclined plane: equilibrium modelling and numerical analysis Static drops on an inclined plane: equilibrium modelling and numerical analysis 194 287-undefined
[8]  
Vedantam S(1999)The effects of resistance to shift of the equilibrium state of a liquid droplet in contact with a solid J Colloid Interface Sci 213 1-undefined
[9]  
Panchagnula MV(1999)On the gravitational displacement of three-dimensional fluid droplets from inclined solid surfaces J Fluid Mech 395 181-undefined
[10]  
Vedantam S(2001)On the displacement of three-dimensional fluid droplets adhering to a plane wall in viscous pressure-driven flows J Fluid Mech 435 327-undefined