A result on generalized derivations on right ideals of prime rings

被引:0
|
作者
Ç. Demir
N. Argaç
机构
[1] Ege University,
来源
Ukrainian Mathematical Journal | 2012年 / 64卷
关键词
Prime Ring; Generalize Derivation; Semiprime Ring; Differential Identity; Generalize Polynomial Identity;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a prime ring of characteristic other than 2 and let I be a nonzero right ideal of R. Also let U be the right Utumi quotient ring of R and let C be the center of U. If G is a generalized derivation of R such that [[G(x), x], G(x)] = 0 for all x ∈ I, then R is commutative or there exist a, b ∈ U such that G(x) = ax + xb for all x ∈ R and one of the following assertions is true: (1) (a - λ)I = (0) = (b + λ)I for some λ ∈ C,(2) (a - λ)I = (0) for some λ ∈ C and b ∈ C.
引用
收藏
页码:186 / 197
页数:11
相关论文
共 50 条
  • [21] Generalized Derivations Commuting on Lie Ideals in Prime Rings
    Dhara B.
    Kar S.
    Kuila S.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2023, 69 (1) : 159 - 181
  • [22] ON RIGHT IDEALS AND DERIVATIONS IN PRIME RINGS WITH ENGEL CONDITION
    Dhara, Basudeb
    Das, Deepankar
    MATEMATICKI VESNIK, 2013, 65 (02): : 261 - 270
  • [23] Generalized skew derivations on Lie ideals in prime rings
    Khan, Shahoor
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2019, 68 (01) : 219 - 225
  • [24] A RESULT ON ANNIHILATOR CONDITION AND GENERALIZED DERIVATIONS OF PRIME RINGS
    Khan, S.
    Shujat, F.
    Alhendi, G.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2019, 43 (02): : 101 - 110
  • [25] Hypercentralizing generalized skew derivations on left ideals in prime rings
    V. De Filippis
    O. M. Di Vincenzo
    Monatshefte für Mathematik, 2014, 173 : 315 - 341
  • [26] Commutators and generalized derivations acting on Lie ideals in prime rings
    Dhara B.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2024, 70 (4) : 1509 - 1526
  • [27] Power cocentralizing generalized derivations on left ideals of prime rings
    Liu, Cheng-Kai
    Tsai, Yuan-Tsung
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025, 24 (06)
  • [28] On an identity involving generalized derivations and Lie ideals of prime rings
    Sandhu, Gurninder Singh
    AIMS MATHEMATICS, 2020, 5 (04): : 3472 - 3479
  • [29] Left annihilator of generalized derivations on Lie ideals in prime rings
    Shujat F.
    Khan S.
    Rendiconti del Circolo Matematico di Palermo (1952 -), 2015, 64 (1): : 77 - 81
  • [30] A RESULT CONCERNING DERIVATIONS IN PRIME RINGS
    Fosner, Maja
    Persin, Nina
    GLASNIK MATEMATICKI, 2013, 48 (01) : 67 - 79