A result on generalized derivations on right ideals of prime rings

被引:0
|
作者
Ç. Demir
N. Argaç
机构
[1] Ege University,
来源
Ukrainian Mathematical Journal | 2012年 / 64卷
关键词
Prime Ring; Generalize Derivation; Semiprime Ring; Differential Identity; Generalize Polynomial Identity;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a prime ring of characteristic other than 2 and let I be a nonzero right ideal of R. Also let U be the right Utumi quotient ring of R and let C be the center of U. If G is a generalized derivation of R such that [[G(x), x], G(x)] = 0 for all x ∈ I, then R is commutative or there exist a, b ∈ U such that G(x) = ax + xb for all x ∈ R and one of the following assertions is true: (1) (a - λ)I = (0) = (b + λ)I for some λ ∈ C,(2) (a - λ)I = (0) for some λ ∈ C and b ∈ C.
引用
收藏
页码:186 / 197
页数:11
相关论文
共 50 条
  • [1] Prime Rings with Generalized Derivations on Right Ideals
    Demir, C.
    Argac, N.
    ALGEBRA COLLOQUIUM, 2011, 18 : 987 - 998
  • [2] A result on generalized derivations on Lie ideals in prime rings
    Dhara B.
    Kar S.
    Mondal S.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2013, 54 (2): : 677 - 682
  • [3] A result on generalized skew derivations on Lie ideals in prime rings
    Ashraf M.
    De Filippis V.
    Khan A.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2017, 58 (2): : 341 - 354
  • [4] GENERALIZED DERIVATIONS ON IDEALS OF PRIME RINGS
    Albas, Emine
    MISKOLC MATHEMATICAL NOTES, 2013, 14 (01) : 3 - 9
  • [5] On Lie Ideals and Generalized Jordan Left Derivations of Prime Rings
    N. Rehman
    A. Z. Ansari
    Ukrainian Mathematical Journal, 2014, 65 : 1247 - 1256
  • [6] On Lie Ideals and Generalized Jordan Left Derivations of Prime Rings
    Rehman, N.
    Ansari, A. Z.
    UKRAINIAN MATHEMATICAL JOURNAL, 2014, 65 (08) : 1247 - 1256
  • [7] A RESULT ON GENERALIZED DERIVATIONS IN PRIME RINGS
    Du, Yiqiu
    Wang, Yu
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (01): : 81 - 85
  • [8] GENERALIZED SKEW DERIVATIONS ON MULTILINEAR POLYNOMIALS IN RIGHT IDEALS OF PRIME RINGS
    Albas, E.
    Argac, N.
    De Filippis, V.
    Demir, C.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2014, 43 (01): : 69 - 83
  • [9] On generalized derivations and Jordan ideals of prime rings
    Sandhu, Gurninder S.
    Davvaz, Bijan
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) : 227 - 233
  • [10] On generalized (α,β)-derivations and Lie ideals of prime rings
    Sandhu, Gurninder S.
    Ali, Shakir
    Boua, Abdelkarim
    Kumar, Deepak
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (01) : 499 - 513