Lie Bialgebras with Triality and Mal’tsev Bialgebras

被引:0
作者
M. E. Goncharov
机构
[1] Sobolev Institute of Mathematics,
[2] Novosibirsk State University,undefined
来源
Algebra and Logic | 2016年 / 55卷
关键词
Mal’tsev algebra; Mal’tsev bialgebra; Lie algebra; Lie bialgebra; classical Yang–Baxter equation; symplectic form;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the relationship between Mal’tsev bialgebras and Lie bialgebras with triality, and also between symplectic Mal’tsev algebras and symplectic Lie algebras with triality. The given relations generalize a connection between Mal’tsev algebras and Lie algebras with triality, revealed by P. O. Mikheev [15], and a connection between Mal’tsev coalgebras and Lie coalgebras with triality, explored by M. E. Goncharov and V. N. Zhelyabin [17].
引用
收藏
页码:198 / 216
页数:18
相关论文
共 26 条
[1]  
Glauberman G(1968)On loops of odd order. II J. Alg. 8 393-414
[2]  
Doro S(1978)Simple Moufang loops Math. Proc. Cambridge Philos. Soc. 83 377-392
[3]  
Liebeck MW(1987)The classification of finite simple Moufang loops Math. Proc. Cambridge Philos. Soc. 102 33-47
[4]  
Grishkov AN(2005)Lagrange’s theorem for Moufang loops Math. Proc. Cambridge Philos. Soc. 139 41-57
[5]  
Zavarnitsine AV(1962)Simple Malcev algebras over fields of characteristic zero Pacific J. Math. 12 1057-1078
[6]  
Sagle AA(1968)Mal’tsev algebras and their representations Algebra Logika 7 48-69
[7]  
Kuz’min EN(1983)Hamiltonian structures on Lie groups, Lie bialgebras, and the geometric meaning of the classical Yang–Baxter equations Dokl. Akad. Nauk SSSR 268 285-287
[8]  
Drinfeld VG(1997)Jordan bialgebras and their relation to Lie bialgebras Algebra and Logic 36 1-15
[9]  
Zhelyabin VN(1998)Jordan bialgebras of symmetric elements and Lie bialgebras Sib. Mat. Zh. 39 261-276
[10]  
Zhelyabin VN(2003)On Poisson–Malcev structures Acta Appl. Math. 75 281-292