Capacitary Estimates for Solutions of the Dirichlet Problem for Second Order Elliptic Equations in Divergence Form

被引:0
作者
Jana Björn
Vladimir Maz"ya
机构
[1] Linköping University,Department of Mathematics
[2] Linköping University,Department of Mathematics
来源
Potential Analysis | 2000年 / 12卷
关键词
Second order elliptic equations in divergence form; Dirichlet problem; Hölder continuity; Capacitary interior diameter; Phragmén–Lindelöf theorem;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Dirichlet problem for A-harmonic functions, i.e. the solutions of the uniformly elliptic equation
引用
收藏
页码:81 / 113
页数:32
相关论文
共 50 条
[42]   Dirichlet problem for a divergence form elliptic equation with unbounded coefficients in an unbounded domain [J].
Chicco M. ;
Venturing M. .
Annali di Matematica Pura ed Applicata, 2000, 178 (1) :325-338
[43]   On multiplicity of solutions of Dirichlet problem for uniformly elliptic operator equations [J].
Wu, Xian ;
Leng, Tianjiu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (01) :216-224
[44]   On the existence and coercive estimates of solutions to the Dirichlet problem for a class of third-order differential equations [J].
Suleimbekova, A. O. ;
Dulaty, M. Kh. .
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2023, 114 (02) :178-185
[45]   On Dirichlet problem and uniform approximation by solutions of second-order elliptic systems in R2 [J].
Bagapsh, Astamur ;
Fedorovskiy, Konstantin ;
Mazalov, Maksim .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (01)
[46]   Mappings by the solutions of second-order elliptic equations [J].
A. B. Zaitsev .
Mathematical Notes, 2014, 95 :642-655
[47]   Mappings by the solutions of second-order elliptic equations [J].
Zaitsev, A. B. .
MATHEMATICAL NOTES, 2014, 95 (5-6) :642-655
[48]   Smoothness of solutions to the Dirichlet problem for a second-order elliptic equation with a square integrable boundary function [J].
A. K. Gushchin .
Doklady Mathematics, 2007, 76 :486-489
[49]   The Lp Dirichlet problem for second-order, non-divergence form operators: solvability and perturbation results [J].
Dindos, Martin ;
Wall, Treven .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (07) :1753-1774
[50]   Smoothness of solutions to the Dirichlet problem for a second-order elliptic equation with a square integrable boundary function [J].
Gushchin, A. K. .
DOKLADY MATHEMATICS, 2007, 76 (01) :486-489