Capacitary Estimates for Solutions of the Dirichlet Problem for Second Order Elliptic Equations in Divergence Form

被引:0
作者
Jana Björn
Vladimir Maz"ya
机构
[1] Linköping University,Department of Mathematics
[2] Linköping University,Department of Mathematics
来源
Potential Analysis | 2000年 / 12卷
关键词
Second order elliptic equations in divergence form; Dirichlet problem; Hölder continuity; Capacitary interior diameter; Phragmén–Lindelöf theorem;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Dirichlet problem for A-harmonic functions, i.e. the solutions of the uniformly elliptic equation
引用
收藏
页码:81 / 113
页数:32
相关论文
共 50 条
[31]   The Behavior of Solutions to the Dirichlet Problem for Second Order Elliptic Equations with Variable Nonlinearity Exponent in a Neighborhood of a Conical Boundary Point [J].
Alkhutov Y. ;
Borsuk M.V. .
Journal of Mathematical Sciences, 2015, 210 (4) :341-370
[32]   Marcinkiewicz continuity estimates for infinite energy solutions of some second order elliptic Dirichlet problems [J].
Dello Schiavo, Lorenzo .
BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2015, 8 (02) :97-112
[33]   CARLESON MEASURE ESTIMATES AND THE DIRICHLET PROBLEM FOR DEGENERATE ELLIPTIC EQUATIONS [J].
Hofmann, Steve ;
Le, Phi ;
Morris, Andrew J. .
ANALYSIS & PDE, 2019, 12 (08) :2095-2146
[34]   Dini continuity of the first-order derivatives of solutions to the dirichlet problem for linear second-order elliptic equations in a nonsmooth domain [J].
M. V. Borsuk .
Siberian Mathematical Journal, 1998, 39 :226-244
[36]   SECOND-ORDER BOUNDARY ESTIMATES FOR SOLUTIONS TO SINGULAR ELLIPTIC EQUATIONS IN BORDERLINE CASES [J].
Anedda, Claudia ;
Porru, Giovanni .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2011,
[37]   The Dirichlet problem for higher order equations in composition form [J].
Barton, Ariel ;
Mayboroda, Svitlana .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (01) :49-107
[38]   Uniqueness of positive radially symmetric solutions of the Dirichlet problem for a nonlinear elliptic system of second order [J].
Abduragimov, E. I. .
MATHEMATICAL NOTES, 2013, 93 (1-2) :3-11
[39]   Uniqueness of positive radially symmetric solutions of the Dirichlet problem for a nonlinear elliptic system of second order [J].
É. I. Abduragimov .
Mathematical Notes, 2013, 93 :3-11
[40]   Regularity theory for solutions to second order elliptic operators with complex coefficients and the Lp Dirichlet problem [J].
Dindos, Martin ;
Pipher, Jill .
ADVANCES IN MATHEMATICS, 2019, 341 :255-298