Capacitary Estimates for Solutions of the Dirichlet Problem for Second Order Elliptic Equations in Divergence Form

被引:0
作者
Jana Björn
Vladimir Maz"ya
机构
[1] Linköping University,Department of Mathematics
[2] Linköping University,Department of Mathematics
来源
Potential Analysis | 2000年 / 12卷
关键词
Second order elliptic equations in divergence form; Dirichlet problem; Hölder continuity; Capacitary interior diameter; Phragmén–Lindelöf theorem;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Dirichlet problem for A-harmonic functions, i.e. the solutions of the uniformly elliptic equation
引用
收藏
页码:81 / 113
页数:32
相关论文
共 24 条
[11]  
Littman W.(1960)A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations Comm. Pure Appl. Math. 13 457-468
[12]  
Stampacchia G.(1961)On Harnack's theorem for elliptic differential equations Comm. Pure Appl. Math. 14 577-591
[13]  
Weinberger H. F.(1958)Continuity of solutions of parabolic and elliptic equations Amer. J. Math. 80 931-954
[14]  
Maz'ya V. G.(1995)Remarks on existence and uniqueness of solutions of elliptic problems with righthand side measure Rend. Mat. 7 321-337
[15]  
Maz'ya V. G.(1966)Isolated singularities of solutions of linear elliptic equations Amer. J. Math. 88 258-272
[16]  
Maz'ya V. G.(1965)Le problème de Dirichlet pour les èquations elliptiques du second ordre à coefficients discontinus Ann. Inst. Fourier (Grenoble) 15 189-258
[17]  
Moser J.(1924)The Dirichlet problem J. Math. Phys. 3 127-146
[18]  
Moser J.(undefined)undefined undefined undefined undefined-undefined
[19]  
Nash J.(undefined)undefined undefined undefined undefined-undefined
[20]  
Prignet A.(undefined)undefined undefined undefined undefined-undefined