Capacitary Estimates for Solutions of the Dirichlet Problem for Second Order Elliptic Equations in Divergence Form

被引:0
作者
Jana Björn
Vladimir Maz"ya
机构
[1] Linköping University,Department of Mathematics
[2] Linköping University,Department of Mathematics
来源
Potential Analysis | 2000年 / 12卷
关键词
Second order elliptic equations in divergence form; Dirichlet problem; Hölder continuity; Capacitary interior diameter; Phragmén–Lindelöf theorem;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Dirichlet problem for A-harmonic functions, i.e. the solutions of the uniformly elliptic equation
引用
收藏
页码:81 / 113
页数:32
相关论文
共 24 条
[1]  
Biroli M.(1986)Wiener estimates at boundary points for degenerate elliptic equations Boll. Un. Mat. Ital. B 6 689-706
[2]  
Marchi S.(1986)Wiener criteria and energy decay for relaxed Dirichlet problems Arch. Rational Mech. Anal. 4 345-387
[3]  
DalMaso G.(1957)Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur 3 25-43
[4]  
Mosco U.(1977)A regularity condition at the boundary for solutions of quasilinear elliptic equations Arch. Rational Mech. Anal. 67 25-39
[5]  
De Giorgi E.(1982)The Green function for uniformly elliptic equations Manuscripta Math. 37 303-342
[6]  
Gariepy R.(1967)A new proof of de Giorgi's theorem Trudy Moskov. Mat. Obshch. 16 319-328
[7]  
Ziemer W. P.(1963)Regular points for elliptic equations with discontinuous coefficients Ann. Scuola Norm. Sup. Pisa 3 43-79
[8]  
Grüter M.(1967)Behavior, near the boundary, of solutions of the Dirichlet problem for a secondorder elliptic equation in divergent form Mat. Zametki 2 209-220
[9]  
Widman K.-O.(1970)On the continuity at a boundary point of solutions of quasi-linear elliptic equations Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 25 42-55
[10]  
Landis E. M.(1984)The modulus of continuity of a harmonic function at a boundary point Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 135 87-95