Asymptotic Behavior of the Integrated Density of States of Acoustic Operators with Random Long Range Perturbations

被引:0
作者
Hatem Najar
机构
[1] Université de Paris 13,Laboratoire Analyse, Géometrie et Application, Institut Galillée
来源
Journal of Statistical Physics | 2004年 / 115卷
关键词
spectral theory; random operators; integrated density of states; Lifshitz tails;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the behavior of the integrated density of states of random acoustic operators of the form Aω=—∇1/ϱω∇. When ϱω is considered as an Anderson type long range perturbations of some periodic function, the behavior of the integrated density of states of Aω in the vicinity of the internal spectral edges is given.
引用
收藏
页码:977 / 996
页数:19
相关论文
共 20 条
[1]  
Damanik D.(2001)Multi-scale analysis implies strong dynamical localization Geom. Funct. Anal. 11 11-29
[2]  
Stollmann P.(1996)Localization of classical waves I: Acoustic waves Comm. Math. Phys. 180 439-482
[3]  
Figotin A.(1996)Band-gap structure of spectra of periodic dielectric and acoustic media II: Two-dimensional photonic crystals Siam. J. Math. 56 1561-1620
[4]  
Klein A.(1983)Large deviation and lifshitz singularity of the integrated density of states of random hamiltonians Comm. Math. Phys. 89 27-40
[5]  
Figotin A.(1982)On the the spectrum of Schrödinger operators with a random potential Comm. Math. Phys 85 329-350
[6]  
Kuchment P.(1999)Internal lifshits tails for random perturbations of periodic Schrödinger operators Duke Math. J. 98 335-396
[7]  
Kirsch W.(2002)Internal lifshits tails for Schrödinger operators with random potentials J. Math. Phys. 43 2948-2958
[8]  
Martinelli F.(1999)Lifshits tails for random Schrödinger operators with singular Poisson potential Comm. Math. Phys. 206 57-103
[9]  
Kirsch W.(1963)Structure of the energy spectrum of impurity bands in disordered solid solutions Soviet Phys. JETP 17 1159-1170
[10]  
Martinelli F.(2001)Asymptotique de la densitè d'ètats intègrèe des opèrateurs acoustiques alèatoires C. R. Acad. Sci. Paris Sèr. I Math. 333 191-194