Nonrealizable Minimal Vertex Triangulations of Surfaces: Showing Nonrealizability Using Oriented Matroids and Satisfiability Solvers

被引:0
作者
Lars Schewe
机构
[1] TU Darmstadt,Fachbereich Mathematik
来源
Discrete & Computational Geometry | 2010年 / 43卷
关键词
Polyhedral surfaces; Embeddings; Oriented matroids; Satisfiability;
D O I
暂无
中图分类号
学科分类号
摘要
We show that no minimal vertex triangulation of a closed, connected, orientable 2-manifold of genus 6 admits a polyhedral embedding in ℝ3. We also provide examples of minimal vertex triangulations of closed, connected, orientable 2-manifolds of genus 5 that do not admit any polyhedral embeddings. Correcting a previous error in the literature, we construct the first infinite family of such nonrealizable triangulations of surfaces. These results were achieved by transforming the problem of finding suitable oriented matroids into a satisfiability problem. This method can be applied to other geometric realizability problems, e.g., for face lattices of polytopes.
引用
收藏
页码:289 / 302
页数:13
相关论文
共 32 条
[1]  
Altshuler A.(1996)Neighborly 2-manifolds with 12 vertices J. Comb. Theory, Ser. A 75 148-162
[2]  
Bokowski J.(2007)How to exhibit toroidal maps in space Discrete Comput. Geom. 38 573-594
[3]  
Schuchert P.(1991)All realizations of Möbius’ torus with seven vertices Struct. Topol. 17 59-78
[4]  
Archdeacon D.(2000)On the generation of oriented matroids Discrete Comput. Geom. 24 197-208
[5]  
Bonnington C.P.(2009)Topological configurations ( Eur. J. Comb. 89 519-522
[6]  
Ellis-Monaghan J.A.(1983)) exist for all Proc. Am. Math. Soc. 12 51-56
[7]  
Bokowski J.(1990)≥17 Math. Intell. 31 305-321
[8]  
Eggert A.(2004)A nonpolyhedral triangulated Möbius strip Discrete Comput. Geom. 50 117-141
[9]  
Bokowski J.(1994)How to build minimal polyhedral models of the Boy surface Geom. Dedic. 13 140-142
[10]  
Guedes de Oliveira A.(1949)Intersection and linking numbers in oriented matroids Acta Univ. Szeged. Sect. Sci. Math. 27 117-136