Ancient Solutions of Geometric Flows with Curvature Pinching

被引:0
|
作者
Susanna Risa
Carlo Sinestrari
机构
[1] Università di Roma “Tor Vergata”,Dipartimento di Matematica
[2] Università di Roma “Tor Vergata”,Dipartimento di Ingegneria Civile e Ingegneria Informatica
来源
The Journal of Geometric Analysis | 2019年 / 29卷
关键词
Ancient solutions; Mean curvature flow; Gauss curvature flow; Geometric flows; 53C44; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
We prove rigidity theorems for ancient solutions of geometric flows of immersed submanifolds. Specifically, we find pinching conditions on the second fundamental form that characterize the shrinking sphere among compact ancient solutions for the mean curvature flow in codimension greater than one, and for some nonlinear curvature flows of hypersurfaces.
引用
收藏
页码:1206 / 1232
页数:26
相关论文
共 50 条
  • [31] Ancient Solutions of Ricci Flow with Type I Curvature Growth (vol 34, 119, 2024)
    Lynch, Stephen
    Abrego, Andoni Royo
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (05)
  • [32] Geometric flows for vascular segmentation
    Zhao, YQ
    Li, ML
    MEDICAL IMAGING 2005: IMAGE PROCESSING, PT 1-3, 2005, 5747 : 1904 - 1912
  • [33] Higher order curvature flows on surfaces
    Schwetlick, Hartmut R.
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2006, 29 (04) : 339 - 348
  • [34] Higher order curvature flows on surfaces
    Hartmut R. Schwetlick
    Annals of Global Analysis and Geometry, 2006, 29 : 333 - 342
  • [35] Nonexistence of noncompact Type-I ancient three-dimensional κ-solutions of Ricci flow with positive curvature
    Hallgren, Max
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (06)
  • [36] TRANSLATING SOLUTIONS OF NON-PARAMETRIC MEAN CURVATURE FLOWS WITH CAPILLARY-TYPE BOUNDARY VALUE PROBLEMS
    Wang, Jun
    Wei, Wei
    Xu, Jinju
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (06) : 3243 - 3265
  • [37] Stability of geometric flows of closed forms
    Bedulli, Lucio
    Vezzoni, Luigi
    ADVANCES IN MATHEMATICS, 2020, 364
  • [38] Ancient asymptotically cylindrical flows and applications
    Choi, Kyeongsu
    Haslhofer, Robert
    Hershkovits, Or
    White, Brian
    INVENTIONES MATHEMATICAE, 2022, 229 (01) : 139 - 241
  • [39] Simulation of Mean Curvature Flows on Surfaces of Revolution
    R. Yu. Pepa
    Computational Mathematics and Mathematical Physics, 2019, 59 : 290 - 300
  • [40] Examples of Ricci-Mean Curvature Flows
    Yamamoto, Hikaru
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (02) : 983 - 1004