On integers 2(p + ia) not of the form ak+ϕ(m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a^k + \phi(m)}$$\end{document}

被引:0
作者
X.-G. Sun
机构
[1] School of Sciences,HuaiHai Institute of Technology
关键词
power of ; the Euler totient function; prime; Selberg’s sieve method; 11A07; 11B25; 11P32;
D O I
10.1007/s10474-015-0524-7
中图分类号
学科分类号
摘要
Let a≧2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a \geqq 2}$$\end{document} be an even integer and let L≧1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L \geqq 1}$$\end{document} be an integer. We show that for a sufficiently large x, the number of primes p≦x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p \leqq x}$$\end{document} such that 2p + 2a, . . . , 2p + 2La can not be expressed as ak+ϕ(m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a^{k} +\phi(m)}$$\end{document} is at least C(a,L)xlogx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C(a,L) \frac{x}{log x}}$$\end{document}, where k, m are positive integers, ϕ(m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi(m)}$$\end{document} is the Euler totient function and the constant C(a, L) depends on a, L.
引用
收藏
页码:332 / 340
页数:8
相关论文
共 1 条
  • [1] Chen Y.G.(2009)Eight consecutive positive odd numbers none of which can be expressed as a sum of two prime powers Bull. Aust. Math. Soc., 80 237-243