Advancements in fixed point theory in modular function spaces

被引:18
作者
W. M. Kozlowski
机构
[1] School of Mathematics and Statistics, University of New South Wales, Sydney, 2052, NSW
关键词
7H09; 47H10;
D O I
10.1007/s40065-012-0051-0
中图分类号
学科分类号
摘要
The purpose of this paper is to give an outline of the recent results in fixed point theory for asymptotic pointwise contractive and nonexpansive mappings, and semigroups of such mappings, defined on some subsets of modular function spaces. Modular function spaces are natural generalizations of both function and sequence variants of many important, from applications perspective, spaces such as Lebesgue, Orlicz, Musielak–Orlicz, Lorentz, Orlicz–Lorentz, Calderon–Lozanovskii spaces and many others. In the context of the fixed point theory, we will discuss foundations of the geometry of modular function spaces, and other important techniques like extensions of the Opial property and normal structure to modular spaces. We will present a series of existence theorems of fixed points for nonlinear mappings, and of common fixed points for semigroups of mappings. We will also discuss the iterative algorithms for the construction of the fixed points of the asymptotic pointwise nonexpansive mappings and the convergence of such algorithms.[Figure not available: see fulltext.]. © 2012, The Author(s).
引用
收藏
页码:477 / 494
页数:17
相关论文
共 65 条
[1]  
Ait Taleb A., Hanebaly E., A fixed point theorem and its application to integral equations in modular function spaces, Proc. Am. Math. Soc., 128, 2, pp. 419-427, (1999)
[2]  
Akimovic B.A., On uniformly convex and uniformly smooth Orlicz spaces, Teor. Funkc. Funkcional. Anal. i Prilozen., 15, pp. 114-220, (1972)
[3]  
Al-Mezel S.A., Al-Roqi A., Khamsi M.A., One-local retract and common fixed point in modular function spaces, Fixed Point Theory Appl., 2012, (2012)
[4]  
Baillon J.B., Nonexpansive mappings and hyperconvex spaces, Contemp. Math., 72, pp. 11-19, (1988)
[5]  
Beg I., Inequalities in metric spaces with applications, Top. Meth. Nonlinear Anal., 17, pp. 183-190, (2001)
[6]  
Belluce L.P., Kirk W.A., Fixed-point theorems for families of contraction mappings, Pac. J. Math., 18, pp. 213-217, (1966)
[7]  
Belluce L.P., Kirk W.A., Nonexpansive mappings and fixed-points in Banach spaces, Illinois. J. Math., 11, pp. 474-479, (1967)
[8]  
Birnbaum Z., Orlicz W., Uber die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen, Stud. Math., 3, pp. 1-67, (1931)
[9]  
Brodskii M.S., Milman D.P., On the center of convex set, Dokl. Acad. Funkcional. Nauk. SSSR, 59, pp. 837-840, (1948)
[10]  
Browder F.E., nonlinear operators in a Banach space, Proc. Natl. Acad. Sci. USA, 54, pp. 1041-1044, (1965)