Triple Lie Systems Associated with (−1, 1) Algebras

被引:0
作者
L. R. Borisova
S. V. Pchelintsev
机构
[1] Finance University under the Government,
来源
Russian Mathematics | 2020年 / 64卷
关键词
central isotope; (−1, 1)-algebra; Lie triple system;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a Lie triple system associated with the central isotope of (− 1, 1)-algebra. The associator ideal of (−1, 1)-algebra is nilpotent if and only if the Lie triple system is nilpotent. The relationship of the constructed Lie triple system with other known Lie triple systems is discussed.
引用
收藏
页码:72 / 75
页数:3
相关论文
共 13 条
[1]  
Jacobson N(1954)Structure of alternative and Jordan bimodules Osaka J. Math. 6 1-71
[2]  
Kuz’min EN(1968)Mal’tsev algebras and their representations Algebra and Logic 7 233-244
[3]  
Carlsson R(1976)Malcev-moduln J. Reine Angew. Math. 281 199-210
[4]  
Pchelintsev SV(2015)Prime (−1, 1) and Jordan monsters and superalgebras vector type J. Algebra 423 54-86
[5]  
Shestakov LP(2015)Speciality of Jordan superalgebras related to Novikov-Poisson algebras Math. Notes 97 341-348
[6]  
Zhelyabin VN(1974)The characterization of (−1, 1)-rings J. Algebra 30 236-258
[7]  
Zakharov AS(1986)Prime algebras and absolute zero divisors Izv. Akad. Nauk SSSR Ser. Mat. 50 79-100
[8]  
Hentzel IR(2010)Isotopes of prime (−1, 1)-algebras and Jordan algebras Algebra and Logic 49 262-288
[9]  
Pchelintsev SV(1971)Homotopes of alternative algebras Math. Ann. 191 253-262
[10]  
Pchelintsev SV(1977)Centers of free (−1, 1)-ring Sib. mat. J. 18 861-870