On the best constants in Markov-type inequalities involving Laguerre norms with different weights

被引:0
作者
Albrecht Böttcher
Peter Dörfler
机构
[1] TU Chemnitz,Fakultät für Mathematik
[2] Montanuniversität Leoben,Department Mathematik und Informationstechnologie
来源
Monatshefte für Mathematik | 2010年 / 161卷
关键词
Markov inequality; Laguerre polynomial; Toeplitz matrix; Volterra operator; Primary 41A44; Secondary 15A18; 26D10; 45D05; 47B35;
D O I
暂无
中图分类号
学科分类号
摘要
The paper concerns best constants in Markov-type inequalities between the norm of a higher derivative of a polynomial and the norm of the polynomial itself. The norm of the polynomial is taken in L2 on the half-line with the weight tαe−t and the derivative is measured in L2 on the half-line with the weight tβe−t. Under an additional assumption on the difference β − α, we determine the leading term of the asymptotics of the constants as the degree of the polynomial goes to infinity.
引用
收藏
页码:357 / 367
页数:10
相关论文
共 15 条
  • [1] Agarwal R.P.(2002)Extremal problems, inequalities, and classical orthogonal polynomials Appl. Math. Comput. 128 151-166
  • [2] Milovanović G.V.(2009)On the best constants in inequalities of the Markov and Wirtinger types for polynomials on the half-line Linear Algebra Appl. 430 1057-1069
  • [3] Böttcher A.(2010)Weighted Markov-type inequalities, norms of Volterra operators, and zeros of Bessel functions Math. Nachr. 283 40-57
  • [4] Dörfler P.(1990)A Markov type inequality for higher derivatives of polynomials Monatsh. Math. 109 113-122
  • [5] Böttcher A.(1991)Über die bestmögliche Konstante in Markov-Ungleichungen mit Laguerre-Gewicht österreich Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 200 13-20
  • [6] Dörfler P.(2002)Asymptotics of the best constant in a certain Markov-type inequality J. Approx. Theory 114 84-97
  • [7] Dörfler P.(1994)Weighted J. Math. Anal. Appl. 182 244-249
  • [8] Dörfler P.(1944) analogues of Bernstein’s inequality and classical orthogonal polynomials Math. Ann. 119 165-204
  • [9] Dörfler P.(1965)Über die nebst ihren Ableitungen orthogonalen Polynomensysteme und das zugehörige Extremum J. Res. Nat. Bur. Standards 69B 155-158
  • [10] Guessab A.(1960)Some Mathematica (Cluj) 2 373-378