Systematics of QQq¯q¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$QQ{\bar{q}}{\bar{q}}$$\end{document} in a chiral constituent quark model

被引:0
作者
Yue Tan
Weichang Lu
Jialun Ping
机构
[1] Nanjing Normal University,Department of Physics and Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems
关键词
D O I
10.1140/epjp/s13360-020-00741-w
中图分类号
学科分类号
摘要
Inspired by Ξcc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varXi _{cc}$$\end{document} reported by LHCb Collaboration and X(5568) reported by D0 Collaboration, the QQq¯q¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$QQ{\bar{q}}{\bar{q}}$$\end{document} (Q=c,b,s,q=u,d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q=c,b,s, q=u,d$$\end{document}) tetraquark states, are studied in the present work. With the help of Gaussian expansion method, two structures, diquark–antidiquark and meson–meson, with all possible color configurations are investigated systematically in a chiral quark model to search for the possible stable states. The results show that there is no bound state in the iso-vector QQq¯q¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$QQ{\bar{q}}{\bar{q}}$$\end{document} system, while there are rather deep bound states in the iso-scalar bbq¯q¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$bb{\bar{q}}{\bar{q}}$$\end{document}, ccq¯q¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$cc{\bar{q}}{\bar{q}}$$\end{document} and bcq¯q¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$bc{\bar{q}}{\bar{q}}$$\end{document} systems. There are also several shallow bound states in QQ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$QQ^{\prime }$$\end{document} system. Mixing two structures of diquark–antidiquark and meson–meson can introduce more attractions and convert some unbound iso-scalar states into shallow bound states. The large mass of the heavy quark is beneficial to the formation of the bound state. The separations between quarks are calculated to unravel the spacial structure of the system. We also compare our result with that of other approaches.
引用
收藏
相关论文
共 106 条
  • [1] Choi SK(2003)undefined Phys. Rev. Lett. 91 262001-undefined
  • [2] Aaij R(2019)undefined JHEP 1907 035-undefined
  • [3] Ablikim M(2013)undefined Phys. Rev. Lett. 110 252001-undefined
  • [4] Ablikim M(2013)undefined Phys. Rev. Lett. 111 242001-undefined
  • [5] Olsen SL(2018)undefined Rev. Mod. Phys. 90 015003-undefined
  • [6] Skwarncki T(2016)undefined Phys. Rev. Lett. 117 022003-undefined
  • [7] Zieminska D(2018)undefined Phys. Rev. D 97 092004-undefined
  • [8] Abazov VM(2019)undefined Eur. Phys. J. C 79 556-undefined
  • [9] Abazov VM(2017)undefined Phys. Rev. Lett. 119 112002-undefined
  • [10] Huang H(2002)undefined Phys. Rev. Lett. 89 112001-undefined