Riesz–Kolmogorov Compactness Criterion, Lorentz Convergence and Ruelle Theorem on Locally Compact Abelian Groups

被引:0
作者
Vladimir Georgescu
Andrei Iftimovici
机构
[1] CNRS,Department of Mathematics
[2] University of Cergy-Pontoise,undefined
来源
Potential Analysis | 2004年 / 20卷
关键词
RAGE theorem; almost convergence; compactness criteria; bound states;
D O I
暂无
中图分类号
学科分类号
摘要
Ruelle's theorem gives, for a certain class of self-adjoint operators on L2(Rn), a description of the pure point and continuous spectral subspaces of the operator in terms of bound and scattering states. We extend this characterization to arbitrary self-adjoint operators acting in L2(X), where X is an Abelian locally compact group. We replace the convergence in Cesàro mean from the standard version of Ruelle's theorem by convergence in Lorentz sense, which is sharper than any convergence in invariant mean sense. Our main tool is a description in term of position and momentum observables of relatively compact subsets of L2(X) extending the Riesz–Kolmogorov theorem.
引用
收藏
页码:265 / 284
页数:19
相关论文
共 32 条
[1]  
Amrein W.(1973)On the characterization of bound states and scattering states in quantum mechanics Helv. Phys. Acta 46 635-658
[2]  
Georgescu V.(1974)Strong asymptotic completeness of wave operators for highly singular potentials Helv. Phys. Acta 47 517-533
[3]  
Amrein W.(1975)Weakly almost periodic functions and almost convergent functions on a group Trans. Amer. Math. Soc. 206 175-200
[4]  
Georgescu V.(1983)One-dimensional wave equations in disordered media J. Phys. A 16 25-42
[5]  
Chou C.(1978)Asymptotic completeness for quantum mechanical potential scattering. I. Short range potentials Comm. Math. Phys. 61 285-291
[6]  
Delyon F.(1983)Bound states and propagating states for time-dependent Hamiltonians Ann. Inst. H. Poincaré Sect. A 39 159-191
[7]  
Kunz H.(2002)Crossed products of Comm. Math. Phys. 228 519-560
[8]  
Souillard B.(1990)-algebras and spectral analysis of quantum Hamiltonians Helv. Phys. Acta 63 107-138
[9]  
Enss V.(1983)Phase space analysis of the charge transfer model Ann. Inst. H. Poincaré Sect. A 38 59-68
[10]  
Enss V.(1994)An analog of the RAGE theorem for the impact parameter approximation to three particle scattering Comm. Math. Phys. 160 457-473