Derivations of Commutative Residuated Lattices

被引:0
作者
M. Kondo
机构
[1] Tokyo Denki University,Department of Mathematics, School of System Design and Technology
来源
Bulletin of the Iranian Mathematical Society | 2018年 / 44卷
关键词
(Monotone) Derivation; Residuated lattice; MV-algebra; Primary 03G10; Secondary 06F35;
D O I
暂无
中图分类号
学科分类号
摘要
In this short note, we consider some properties of derivations of commutative residuated lattices and show that for any residuated lattice X,if d is a monotone derivation and d1∈B(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d1\in B(X)$$\end{document} then it is characterized by dx=x′′∧d1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{d}x = x'' \wedge d1$$\end{document};if X is a linearly ordered Rℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-monoid and d is an additive derivation then the derivation d has only two cases d1=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d1=1$$\end{document} or d=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=0$$\end{document};the notion of a monotone derivation is identical with that of an additive derivation in every MV-algebra.
引用
收藏
页码:93 / 100
页数:7
相关论文
共 16 条
[1]  
Alshehri NO(2010)Derivations of MV-algebras Int. J. Math. Math. Sci. 2010 7-382
[2]  
Ferrari L(2001)On derivations of lattices Pure Math. Appl. (PU.M.A.) 12 365-90
[3]  
Ghorbani S(2013)( Iran. J. Math. Sci. Inform. 8 75-524
[4]  
Torkzadeh L(2002))-Derivations and ( Int. J. Algebra Comput. 12 509-1100
[5]  
Motamed S(1957))-derivations on MV-algebras Proc. Am. Math. Soc. 8 1093-154
[6]  
Hart JB(1975)The structure of commutative residuated lattices Acta Sci. Math. (Szeged) 37 149-354
[7]  
Rafter J(1939)Derivations in prime rings Trans. Am. Math. Soc. 45 335-316
[8]  
Tsinakis C(2008)Derivations of lattices Inf. Sci. 178 307-354
[9]  
Posner E(2013)Residuated lattices Miskolc Math. Notes 14 345-undefined
[10]  
Szász G(undefined)On derivations of lattices undefined undefined undefined-undefined