Locally Stein Open Subsets in Normal Stein Spaces

被引:0
作者
Ovidiu Preda
机构
[1] Institute of Mathematics of the Romanian Academy,
来源
The Journal of Geometric Analysis | 2015年 / 25卷
关键词
Stein space; Locally Stein subset; Envelope of holomorphy; 32E10; 32E40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present a result for the local Steinness problem: if Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a locally Stein open subset of a Stein space X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document}, does it follow that Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is itself Stein? We will prove that if X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document} is normal, then for every sequence of points (xn)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x_n)_n$$\end{document} which tends to a limit x∈∂Ω\Sing(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \partial \Omega {\backslash } \mathrm{Sing}(X)$$\end{document}, there exists a holomorphic function f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} which is unbounded on (xn)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x_n)_n$$\end{document}. Then, we will use this result to obtain a characterization theorem for a particular case of the Serre problem.
引用
收藏
页码:2759 / 2766
页数:7
相关论文
共 16 条
[1]  
Andreotti A(1964)Oka’s Heftungslemma and the Levi problem for complex spaces Trans. Am. Math. Soc. 111 345-366
[2]  
Narasimhan R(1985)A counterexample to the Serre problem with a bounded domain of Ann. Math. 2nd Series 122 329-334
[3]  
Coeuré G(2009) as fiber Rend. Mat. Roma 7 341-353
[4]  
Loeb JJ(2000)The Levi problem on Stein spaces with singularities. A survey Math. Ann. 316 185-199
[5]  
Colţoiu M(1980)On Levi’s problem on complex spaces and envelopes of holomorphy Math. Ann. 248 47-72
[6]  
Colţoiu M(1965)The Levi problem on complex spaces with singularities Math. Zeitschr. 65 175-194
[7]  
Diederich K(1953)Plurisubharmonische Funktionen in komplexen Räumen Jpn. J. Math. 23 97-155
[8]  
Fornæss JE(1963)Sur les fonctions analytiques de plusieurs variables complexes. IX. Domaines finis sans points critiques intérieur Ann. Math. 78 455-466
[9]  
Narasimhan R(1976)Vector fields on analytic spaces Math. Ann. 219 171-192
[10]  
Grauert H(1978)Holomorphic fiber bundles whose fibers are bounded stein domains with zero first Betti number Bull. Am. Math. Soc. 84 481-512