Hermitian modular forms congruent to 1 modulo p

被引:0
作者
Michael Hentschel
Gabriele Nebe
机构
[1] RWTH Aachen University,Lehrstuhl A für Mathematik
[2] RWTH Aachen University,Lehrstuhl D für Mathematik
来源
Archiv der Mathematik | 2009年 / 92卷
关键词
Primary 11F46; Secondary 11E12; Hermitian modular forms; ideal lattices; Hermitian lattices;
D O I
暂无
中图分类号
学科分类号
摘要
For any natural number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell$$\end{document} and any prime \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \equiv 1$$\end{document} (mod 4) not dividing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell$$\end{document} there is a Hermitian modular form of arbitrary genus n over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L := {\mathbb{Q}}[\sqrt{-\ell}]$$\end{document} that is congruent to 1 modulo p which is a Hermitian theta series of an OL-lattice of rank p − 1 admitting a fixed point free automorphism of order p. It is shown that also for non-free lattices such theta series are modular forms.
引用
收藏
页码:251 / 256
页数:5
相关论文
empty
未找到相关数据