Bisingular maps on the torus

被引:0
作者
Li Z. [1 ]
Liu Y. [2 ]
机构
[1] Department of Mathematics, Central University for Nationalities
[2] Institute of Mathematics, Beijing Jiaotong University
关键词
Bisingular map; Enumerating function;
D O I
10.1007/BF02831979
中图分类号
学科分类号
摘要
A map is bisingular if each edge is either a loop or an isthmus (i.e., on the boundary of the same face). In this paper we study the number of rooted bisingular maps on the sphere and the torus, and we also present formula for such maps with four parameters: the root-valency,the number of isthmus, the number of planar loops and the number of essential loops. © 2007 Korean Society for Computational & Applied Mathematics and Korean SIGCAM.
引用
收藏
页码:329 / 335
页数:6
相关论文
共 17 条
  • [1] Bender E. A.(1988)The enumeration of maps on the torus and the projective plane Canad. Math. Bull. 31 257-271
  • [2] Canfield E. R.(1986)The asymptotic number of rooted maps on a surface J. of Combin. Theory A 43 244-257
  • [3] Robinson R. W.(1991)The number of rooted 2-connected triangular maps on the projective plane J. of Combin. Theory B 53 130-142
  • [4] Bender E. A.(1992)The asymptotic number of rooted 2-connected triangular maps on a surface J. Combin. Theory B 54 102-112
  • [5] Canfield E. R.(1964)The enumeration of c-nets via quadrangulations J. Combin. Theory 4 256-276
  • [6] Gao Z. C.(2000)Bisingular maps on the sphere and the projective plane Discrete Mathematics 223 275-285
  • [7] Gao Z. C.(1962)A census of planar triangulations Canad. J. Math. 14 21-38
  • [8] Mullin R. C.(1962)A census of slicings Canad. J. Math. 14 708-772
  • [9] Schellenberg P. J.(1962)A census of hamiltonian polygons Canad.J. Math. Soc. 68 402-417
  • [10] Ren Han(1963)A census of planar maps Canad. J. Math. 15 249-271