On the Extension of Ricci Harmonic Flow

被引:0
作者
Guoqiang Wu
Yu Zheng
机构
[1] Zhejiang Sci-Tech University,School of Science
[2] East China Normal University,School of Mathematical Sciences
来源
Results in Mathematics | 2020年 / 75卷
关键词
Ricci harmonic flow; sobolev constant; moser iteration; Primary 53C44; Secondary 53C21;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the extension problem of Ricci harmonic flow. On one hand, using the method of blowing up, we prove Ricci harmonic flow can be extended if Ln+22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\frac{n+2}{2}$$\end{document} norm of Riemannian curvature operator on M×[0,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\times [0, T)$$\end{document} is bounded. On the other hand, we establish L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document} bound for nonnegative subsolution to linear parabolic equation, as an application, we prove that Ricci harmonic flow can be extended if Ln+22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\frac{n+2}{2}$$\end{document} norm of scalar curvature on M×[0,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\times [0, T)$$\end{document} is bounded and Ricci curvature has a uniform lower bound.
引用
收藏
相关论文
共 21 条
[1]  
Anderson M(1992)The Geom. Funct. Anal. 2 29-89
[2]  
Bamler RH(2017) structure of moduli spaces of Einstein metrics on 4-manifolds J. Funct. Anal. 272 2504-2627
[3]  
Bamler RH(2018)Structure theory of singular spaces Ann. Math. 188 753-831
[4]  
Bamler RH(2017)Convergence of Ricci flows with bounded scalar curvature Adv. Math. 319 396-450
[5]  
Zhang QS(2013)Heat kernel and curvature bounds in Ricci flows with bounded scalar curvature Int. Math. Res. Not. IMRN 10 2349-2367
[6]  
Chen XX(2013)On the conditions to extend Ricci flow(III) Geom. Dedicata 164 179-185
[7]  
Wang B(1980)On the extension of the harmonic Ricci flow Ann. Sci. Ecole Norm. Sup. 13 419-435
[8]  
Cheng L(1982)Some isoperimetric inequalities and eigenvalue estimates J. Differ. Geom. 17 255-306
[9]  
Zhu AQ(2018)Three-manifolds with positive Ricci curvature J. Differ. Equ. 265 69-97
[10]  
Croke C(2008)Long time existence and bounded scalar curvature in the Ricci-harmonic flow Commun. Anal. Geom. 16 1007-1048