Filtering for bilinear systems with a lipschitz nonlinearity using LPV approach

被引:0
作者
Benjamin Gerard
Harouna Souley Ali
Michel Zasadzinski
Mohamed Darouach
机构
[1] UMR 7039 — Université de Lorraine,Centre de Recherche en Automatique de Nancy
[2] IUT Henri Poincaré de Longwy CNRS,Faculty of Science, Technology and Communication
[3] University of Luxembourg,undefined
来源
International Journal of Control, Automation and Systems | 2012年 / 10卷
关键词
Bilinear systems; filtering; lipschitzian systems; LPV; unbiasedness;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the H∞ filtering problem for a class of nonlinear systems. This class of nonlinear systems is composed of a bilinear part and of a lipschitzian one. The use of an unbiasedness condition for the bilinear part (called quasi unbiasedness condition) permits to parameterize the filter matrices through a single gain. Two LPV (Linear Parameter Varying) extensions of the bounded real lemma are used to solve the filtering problem. This approach reduces the conservatism inherent to the boundedness of the inputs. Then the filtering solution is expressed in terms of LMI (Linear Matrix Inequality) to be verified at the vertices of a polytope. A numerical example is finally given to illustrate our approach.
引用
收藏
页码:1086 / 1095
页数:9
相关论文
共 33 条
[1]  
Kim B.(2003)Robust International Journal of Control, Automation, and Systems 1 171-177
[2]  
Lim M.(2009) control method for bilinear systems International Journal of Control, Automation, and Systems 7 151-155
[3]  
Lee Y.(2010)Periodic use of time-varying state feedbacks for the receding horizon control of bilinear systems IEEE Trans. on Automatic Control 55 1668-1674
[4]  
Kouvaritakis B.(2002) filter for bilinear systems using LPV approach IEEE Trans. on Automatic Control 47 1751-1754
[5]  
Cannon M.(2006)A note on observers for Lipschitz nonlinear systems IEEE Trans. Circ. Syst. II: Express Briefs 53 563-567
[6]  
Gerard B.(1979)Full-order and reduced-order observers for Lipschitz descriptor systems: the unified LMI approach Int. J. Syst. Sci. 10 649-668
[7]  
Souley Ali H.(1979)Observers for bilinear systems with bounded input Int. J. Contr. 29 181-188
[8]  
Zasadzinski M.(1992)Stable state estimator for bilinear systems IEEE Trans. on Automatic Control 37 875-880
[9]  
Darouach M.(2004)A simple observer for nonlinear systems, applications to bioreactors Automatica 40 135-143
[10]  
Zhu F.(1999)Observer design for a class of MIMO nonlinear systems IEEE Trans. Sign. Proc 47 2324-2328