Speed Scaling for Maximum Lateness

被引:0
作者
Evripidis Bampis
Dimitrios Letsios
Ioannis Milis
Georgios Zois
机构
[1] Sorbonne Universités,Department of Informatics
[2] Athens University of Economics and Business,undefined
来源
Theory of Computing Systems | 2016年 / 58卷
关键词
Energy efficiency; Speed scaling; Scheduling; Maximum lateness;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the power-aware problem of scheduling non-preemptively a set of jobs on a single speed-scalable processor so as to minimize the maximum lateness, under a given budget of energy. In the offline setting, our main contribution is a combinatorial polynomial time algorithm for the case in which the jobs have common release dates. In the presence of arbitrary release dates, we show that the problem becomes strongly NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {N}\mathcal {P}$\end{document}-hard. Moreover, we show that there is no O(1)-competitive deterministic algorithm for the online setting in which the jobs arrive over time. Then, we turn our attention to an aggregated variant of the problem, where the objective is to find a schedule minimizing a linear combination of maximum lateness and energy. As we show, our results for the budget variant can be adapted to derive a similar polynomial time algorithm and an NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {N}\mathcal {P}$\end{document}-hardness proof for the aggregated variant in the offline setting, with common and arbitrary release dates respectively. More interestingly, for the online case, we propose a 2-competitive algorithm.
引用
收藏
页码:304 / 321
页数:17
相关论文
共 50 条
[41]   No-wait flowshop with separate setup times to minimize maximum lateness [J].
Ruiz, Ruben ;
Allahverdi, Ali .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2007, 35 (5-6) :551-565
[42]   MINIMIZING MAXIMUM LATENESS IN TWO-STAGE PROJECTS BY TROPICAL OPTIMIZATION [J].
Krivulin, Nikolai ;
Sergeev, Sergei .
KYBERNETIKA, 2022, 58 (05) :816-841
[43]   Scheduling on parallel machines to minimise maximum lateness for the customer order problem [J].
Su, Ling-Huey ;
Chen, Ping-Shun ;
Chen, Szu-Yin .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2013, 44 (05) :926-936
[44]   Minimization of maximum lateness in a flowshop learning effect scheduling with release dates [J].
Bai, Danyu ;
Bai, Xiaoyuan ;
Yang, Jie ;
Zhang, Xingong ;
Ren, Tao ;
Xie, Chenxi ;
Liu, Bingqian .
COMPUTERS & INDUSTRIAL ENGINEERING, 2021, 158 (158)
[45]   Bounded serial-batching scheduling for minimizing maximum lateness and makespan [J].
He, Cheng ;
Lin, Hao ;
Lin, Yixun .
DISCRETE OPTIMIZATION, 2015, 16 :70-75
[46]   Fuzzy Resource Allocation Problem for Minimizing Maximum Lateness on a Single Machine [J].
Harikrishnan, Kanthen K. ;
Ishii, Hiroaki .
INDUSTRIAL ENGINEERING AND MANAGEMENT SYSTEMS, 2006, 5 (02) :97-101
[47]   Minimizing maximum lateness in a single machine scheduling problem with fuzzy processing times and fuzzy due dates [J].
Chanas, S ;
Kasperski, A .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2001, 14 (03) :377-386
[48]   Two-machine flowshop scheduling problem to minimize maximum lateness with bounded setup and processing times [J].
Allahverdi, Ali .
KUWAIT JOURNAL OF SCIENCE & ENGINEERING, 2006, 33 (02) :233-252
[49]   Permutation flow shops with exact time lags to minimise maximum lateness [J].
Fondrevelle, J. ;
Oulamara, A. ;
Portmann, M. -C. ;
Allahverdi, A. .
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2009, 47 (23) :6759-6775
[50]   No-wait flowshop with separate setup times to minimize maximum lateness [J].
Rubén Ruiz ;
Ali Allahverdi .
The International Journal of Advanced Manufacturing Technology, 2007, 35 :551-565