Speed Scaling for Maximum Lateness

被引:0
作者
Evripidis Bampis
Dimitrios Letsios
Ioannis Milis
Georgios Zois
机构
[1] Sorbonne Universités,Department of Informatics
[2] Athens University of Economics and Business,undefined
来源
Theory of Computing Systems | 2016年 / 58卷
关键词
Energy efficiency; Speed scaling; Scheduling; Maximum lateness;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the power-aware problem of scheduling non-preemptively a set of jobs on a single speed-scalable processor so as to minimize the maximum lateness, under a given budget of energy. In the offline setting, our main contribution is a combinatorial polynomial time algorithm for the case in which the jobs have common release dates. In the presence of arbitrary release dates, we show that the problem becomes strongly NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {N}\mathcal {P}$\end{document}-hard. Moreover, we show that there is no O(1)-competitive deterministic algorithm for the online setting in which the jobs arrive over time. Then, we turn our attention to an aggregated variant of the problem, where the objective is to find a schedule minimizing a linear combination of maximum lateness and energy. As we show, our results for the budget variant can be adapted to derive a similar polynomial time algorithm and an NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {N}\mathcal {P}$\end{document}-hardness proof for the aggregated variant in the offline setting, with common and arbitrary release dates respectively. More interestingly, for the online case, we propose a 2-competitive algorithm.
引用
收藏
页码:304 / 321
页数:17
相关论文
共 50 条
  • [21] Speed scaling problems with memory/cache consideration
    Wu, Weiwei
    Li, Minming
    Wang, Kai
    Huang, He
    Chen, Enhong
    JOURNAL OF SCHEDULING, 2018, 21 (06) : 633 - 646
  • [22] Speed scaling problems with memory/cache consideration
    Weiwei Wu
    Minming Li
    Kai Wang
    He Huang
    Enhong Chen
    Journal of Scheduling, 2018, 21 : 633 - 646
  • [23] Minimising maximum lateness in a two-machine flowshop
    Haouari, M
    Ladhari, T
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2000, 51 (09) : 1100 - 1106
  • [24] Accelerated tabu search for no-wait flowshop scheduling problem with maximum lateness criterion
    Wang, Chuyang
    Li, Xiaoping
    Wang, Qian
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 206 (01) : 64 - 72
  • [25] Single machine rescheduling for new orders with maximum lateness minimization
    Rener E.
    Salassa F.
    T'kindt V.
    Computers and Operations Research, 2022, 144
  • [26] Minimizing the maximum lateness for scheduling with release times and job rejection
    Kacem, Imed
    Kellerer, Hans
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2024, 48 (03)
  • [27] Approximation algorithms for minimizing the maximum lateness and makespan on parallel machines
    Gais Alhadi
    Imed Kacem
    Pierre Laroche
    Izzeldin M. Osman
    Annals of Operations Research, 2020, 285 : 369 - 395
  • [28] Bicriteria scheduling on a batching machine to minimize maximum lateness and makespan
    He, Cheng
    Lin, Yixun
    Yuan, Jinjiang
    THEORETICAL COMPUTER SCIENCE, 2007, 381 (1-3) : 234 - 240
  • [29] Approximation algorithms for minimizing the maximum lateness and makespan on parallel machines
    Alhadi, Gais
    Kacem, Imed
    Laroche, Pierre
    Osman, Izzeldin M.
    ANNALS OF OPERATIONS RESEARCH, 2020, 285 (1-2) : 369 - 395
  • [30] Minimization of maximum lateness with equal processing times for single machine
    Lazarev, Alexander A.
    Arkhipov, Dmitry I.
    IFAC PAPERSONLINE, 2015, 48 (03): : 806 - 809