Speed Scaling for Maximum Lateness

被引:0
作者
Evripidis Bampis
Dimitrios Letsios
Ioannis Milis
Georgios Zois
机构
[1] Sorbonne Universités,Department of Informatics
[2] Athens University of Economics and Business,undefined
来源
Theory of Computing Systems | 2016年 / 58卷
关键词
Energy efficiency; Speed scaling; Scheduling; Maximum lateness;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the power-aware problem of scheduling non-preemptively a set of jobs on a single speed-scalable processor so as to minimize the maximum lateness, under a given budget of energy. In the offline setting, our main contribution is a combinatorial polynomial time algorithm for the case in which the jobs have common release dates. In the presence of arbitrary release dates, we show that the problem becomes strongly NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {N}\mathcal {P}$\end{document}-hard. Moreover, we show that there is no O(1)-competitive deterministic algorithm for the online setting in which the jobs arrive over time. Then, we turn our attention to an aggregated variant of the problem, where the objective is to find a schedule minimizing a linear combination of maximum lateness and energy. As we show, our results for the budget variant can be adapted to derive a similar polynomial time algorithm and an NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {N}\mathcal {P}$\end{document}-hardness proof for the aggregated variant in the offline setting, with common and arbitrary release dates respectively. More interestingly, for the online case, we propose a 2-competitive algorithm.
引用
收藏
页码:304 / 321
页数:17
相关论文
共 50 条
  • [1] Speed Scaling for Maximum Lateness
    Bampis, Evripidis
    Letsios, Dimitrios
    Milis, Ioannis
    Zois, Georgios
    THEORY OF COMPUTING SYSTEMS, 2016, 58 (02) : 304 - 321
  • [2] Scheduling Data Gathering with Maximum Lateness Objective
    Berlinska, Joanna
    PARALLEL PROCESSING AND APPLIED MATHEMATICS (PPAM 2017), PT II, 2018, 10778 : 135 - 144
  • [3] Minimizing maximum promptness and maximum lateness on a single machine
    Hoogeveen, JA
    MATHEMATICS OF OPERATIONS RESEARCH, 1996, 21 (01) : 100 - 114
  • [4] Inverse scheduling with maximum lateness objective
    Brucker, Peter
    Shakhlevich, Natalia V.
    JOURNAL OF SCHEDULING, 2009, 12 (05) : 475 - 488
  • [5] Scheduling job shop problems with operators with respect to the maximum lateness
    Benkalai, Imene
    Rebaine, Djamal
    Baptiste, Pierre
    RAIRO-OPERATIONS RESEARCH, 2020, 54 (02) : 555 - 568
  • [6] Inverse scheduling with maximum lateness objective
    Peter Brucker
    Natalia V. Shakhlevich
    Journal of Scheduling, 2009, 12 : 475 - 488
  • [7] Scheduling UET-UCT outforests to minimize maximum lateness
    Singh, G
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2005, 165 (02) : 468 - 478
  • [8] Scheduling of deteriorating jobs with release dates to minimize the maximum lateness
    Miao, Cuixia
    Zhang, Yuzhong
    Wu, Cuilian
    THEORETICAL COMPUTER SCIENCE, 2012, 462 : 80 - 87
  • [9] Minimization of maximum lateness under linear deterioration
    Hsu, YS
    Lin, BMT
    OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2003, 31 (06): : 459 - 469
  • [10] Min-max relative regret for scheduling to minimize maximum lateness
    Assayakh, Imad
    Kacem, Imed
    Lucarelli, Giorgio
    ANNALS OF OPERATIONS RESEARCH, 2024,