Characterizing the portability of phage-encoded homologous recombination proteins

被引:0
|
作者
Gabriel T. Filsinger
Timothy M. Wannier
Felix B. Pedersen
Isaac D. Lutz
Julie Zhang
Devon A. Stork
Anik Debnath
Kevin Gozzi
Helene Kuchwara
Verena Volf
Stan Wang
Xavier Rios
Christopher J. Gregg
Marc J. Lajoie
Seth L. Shipman
John Aach
Michael T. Laub
George M. Church
机构
[1] Harvard Medical School,Department of Systems Biology
[2] Harvard University,Wyss Institute for Biologically Inspired Engineering
[3] Harvard Medical School,Department of Genetics
[4] University of Southern Denmark,Department of Biochemistry and Molecular Biology
[5] University of Washington,Institute for Protein Design
[6] University of Washington,Department of Bioengineering
[7] Massachusetts Institute of Technology,Department of Mathematics
[8] Harvard University,Department of Molecular and Cellular Biology
[9] Tenza Inc.,Department of Biology
[10] Massachusetts Institute of Technology,Department of Bioengineering and Therapeutic Sciences
[11] John A. Paulson School of Engineering and Applied Sciences,undefined
[12] Harvard University,undefined
[13] Gladstone Institutes,undefined
[14] University of California,undefined
来源
Nature Chemical Biology | 2021年 / 17卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Efficient genome editing methods are essential for biotechnology and fundamental research. Homologous recombination (HR) is the most versatile method of genome editing, but techniques that rely on host RecA-mediated pathways are inefficient and laborious. Phage-encoded single-stranded DNA annealing proteins (SSAPs) improve HR 1,000-fold above endogenous levels. However, they are not broadly functional. Using Escherichia coli, Lactococcus lactis, Mycobacterium smegmatis, Lactobacillus rhamnosus and Caulobacter crescentus, we investigated the limited portability of SSAPs. We find that these proteins specifically recognize the C-terminal tail of the host’s single-stranded DNA-binding protein (SSB) and are portable between species only if compatibility with this host domain is maintained. Furthermore, we find that co-expressing SSAPs with SSBs can significantly improve genome editing efficiency, in some species enabling SSAP functionality even without host compatibility. Finally, we find that high-efficiency HR far surpasses the mutational capacity of commonly used random mutagenesis methods, generating exceptional phenotypes that are inaccessible through sequential nucleotide conversions.
引用
收藏
页码:394 / 402
页数:8
相关论文
共 50 条
  • [1] Characterizing the portability of phage-encoded homologous recombination proteins
    Filsinger, Gabriel T.
    Wannier, Timothy M.
    Pedersen, Felix B.
    Lutz, Isaac D.
    Zhang, Julie
    Stork, Devon A.
    Debnath, Anik
    Gozzi, Kevin
    Kuchwara, Helene
    Volf, Verena
    Wang, Stan
    Rios, Xavier
    Gregg, Christopher J.
    Lajoie, Marc J.
    Shipman, Seth L.
    Aach, John
    Laub, Michael T.
    Church, George M.
    NATURE CHEMICAL BIOLOGY, 2021, 17 (04) : 394 - +
  • [2] Phage-Encoded Endolysins
    Abdelrahman, Fatma
    Easwaran, Maheswaran
    Daramola, Oluwasegun I.
    Ragab, Samar
    Lynch, Stephanie
    Oduselu, Tolulope J.
    Khan, Fazal Mehmood
    Ayobami, Akomolafe
    Adnan, Fazal
    Torrents, Eduard
    Sanmukh, Swapnil
    El-Shibiny, Ayman
    ANTIBIOTICS-BASEL, 2021, 10 (02): : 1 - 31
  • [3] Precise genome engineering in Pseudomonas using phage-encoded homologous recombination and the Cascade-Cas3 system
    Zheng, Wentao
    Xia, Yandong
    Wang, Xue
    Gao, Shiqing
    Zhou, Diao
    Ravichandran, Vinothkannan
    Jiang, Chanjuan
    Tu, Qiang
    Yin, Yulong
    Zhang, Youming
    Fu, Jun
    Li, Ruijuan
    Yin, Jia
    NATURE PROTOCOLS, 2023, 18 (09) : 2642 - 2670
  • [4] Precise genome engineering in Pseudomonas using phage-encoded homologous recombination and the Cascade–Cas3 system
    Wentao Zheng
    Yandong Xia
    Xue Wang
    Shiqing Gao
    Diao Zhou
    Vinothkannan Ravichandran
    Chanjuan Jiang
    Qiang Tu
    Yulong Yin
    Youming Zhang
    Jun Fu
    Ruijuan Li
    Jia Yin
    Nature Protocols, 2023, 18 : 2642 - 2670
  • [5] Phage-encoded carbohydrate-interacting proteins in the human gut
    Rothschild-Rodriguez, Daniela
    Hedges, Morgen
    Kaplan, Merve
    Karav, Sercan
    Nobrega, Franklin L.
    FRONTIERS IN MICROBIOLOGY, 2023, 13
  • [6] Phage-encoded genes and Salmonella virulence
    Ali, TR
    Pallen, MJ
    MOLECULAR MICROBIOLOGY, 1998, 28 (05) : 1039 - 1040
  • [7] Genetic evidence for the interaction between Bacillus anthracis-encoded phage receptors and their cognate phage-encoded receptor binding proteins
    Forrest, Samantha
    Ton, Sarah
    Sholes, Samantha L.
    Harrison, Sarah
    Plaut, Roger D.
    Verratti, Kathleen
    Wittekind, Michael
    Ettehadieh, Elham
    Necciai, Bryan
    Sozhamannan, Shanmuga
    Grady, Sarah L.
    FRONTIERS IN MICROBIOLOGY, 2023, 14
  • [8] Phage-Encoded Anti-CRISPR Defenses
    Stanley, Sabrina Y.
    Maxwell, Karen L.
    ANNUAL REVIEW OF GENETICS, VOL 52, 2018, 52 : 445 - +
  • [9] PSEUDO DOMAINS IN PHAGE-ENCODED DNA METHYLTRANSFERASES
    LANGE, C
    JUGEL, A
    WALTER, J
    NOYERWEIDNER, M
    TRAUTNER, TA
    NATURE, 1991, 352 (6336) : 645 - 648
  • [10] Phage-Encoded Cationic Antimicrobial Peptide Required for Lysis
    Holt, Ashley
    Cahill, Jesse
    Ramsey, Jolene
    Martin, Cody
    O'Leary, Chandler
    Moreland, Russell
    Maddox, Lori T.
    Galbadage, Thushara
    Sharan, Riti
    Sule, Preeti
    Cirillo, Jeffrey D.
    Young, Ry
    JOURNAL OF BACTERIOLOGY, 2022, 204 (01)