Efficient implementation of symplectic implicit Runge-Kutta schemes with simplified Newton iterations

被引:0
作者
Mikel Antoñana
Joseba Makazaga
Ander Murua
机构
[1] UPV/EHU (University of the Basque Country),Computer Science and Artificial Intelligence Department
来源
Numerical Algorithms | 2018年 / 78卷
关键词
Symplectic implicit Runge-Kutta schemes; Simplified Newton iteration; Efficient implementation; Round-off error propagation;
D O I
暂无
中图分类号
学科分类号
摘要
We are concerned with the efficient implementation of symplectic implicit Runge-Kutta (IRK) methods applied to systems of Hamiltonian ordinary differential equations by means of Newton-like iterations. We pay particular attention to time-symmetric symplectic IRK schemes (such as collocation methods with Gaussian nodes). For an s-stage IRK scheme used to integrate a d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dim $\end{document}-dimensional system of ordinary differential equations, the application of simplified versions of Newton iterations requires solving at each step several linear systems (one per iteration) with the same sd×sd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$s\dim \times s\dim $\end{document} real coefficient matrix. We propose a technique that takes advantage of the symplecticity of the IRK scheme to reduce the cost of methods based on diagonalization of the IRK coefficient matrix. This is achieved by rewriting one step of the method centered at the midpoint on the integration subinterval and observing that the resulting coefficient matrix becomes similar to a skew-symmetric matrix. In addition, we propose a C implementation (based on Newton-like iterations) of Runge-Kutta collocation methods with Gaussian nodes that make use of such a rewriting of the linear system and that takes special care in reducing the effect of round-off errors. We report some numerical experiments that demonstrate the reduced round-off error propagation of our implementation.
引用
收藏
页码:63 / 86
页数:23
相关论文
共 22 条
[1]  
Baboulin M(2009)Accelerating scientific computations with mixed precision algorithms Comput. Phys. Commun. 180 2526-2533
[2]  
Buttari A(1977)An efficient solution process for implicit Runge-Kutta methods SIAM J. Numer. Anal. 14 1022-1027
[3]  
Dongarra J(2014)Efficient implementation of Gauss collocation and Hamiltonian boundary value methods Numerical Algorithms 65 633-650
[4]  
Kurzak J(1976)On the implementation of implicit Runge-Kutta methods BIT Numer. Math. 16 237-240
[5]  
Langou J(2008)Achieving Brouwer’s law with implicit Runge-Kutta methods BIT Numer. Math. 48 231-243
[6]  
Langou J(1994)The non-existence of symplectic multi-derivative Runge-Kutta methods BIT Numer. Math. 34 80-87
[7]  
Luszczek P(1965)Further remarks on reducing truncation errors Commun. ACM 8 40-66
[8]  
Tomov S(1970)Efficient integration methods for stiff systems of ordinary differential equations SIAM J. Numer. Anal. 7 47-undefined
[9]  
Bickart TA(undefined)undefined undefined undefined undefined-undefined
[10]  
Brugnano L(undefined)undefined undefined undefined undefined-undefined