Clinical-grade computational pathology using weakly supervised deep learning on whole slide images

被引:0
|
作者
Gabriele Campanella
Matthew G. Hanna
Luke Geneslaw
Allen Miraflor
Vitor Werneck Krauss Silva
Klaus J. Busam
Edi Brogi
Victor E. Reuter
David S. Klimstra
Thomas J. Fuchs
机构
[1] Memorial Sloan Kettering Cancer Center,Department of Pathology
[2] Weill Cornell Graduate School of Medical Sciences,undefined
来源
Nature Medicine | 2019年 / 25卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The development of decision support systems for pathology and their deployment in clinical practice have been hindered by the need for large manually annotated datasets. To overcome this problem, we present a multiple instance learning-based deep learning system that uses only the reported diagnoses as labels for training, thereby avoiding expensive and time-consuming pixel-wise manual annotations. We evaluated this framework at scale on a dataset of 44,732 whole slide images from 15,187 patients without any form of data curation. Tests on prostate cancer, basal cell carcinoma and breast cancer metastases to axillary lymph nodes resulted in areas under the curve above 0.98 for all cancer types. Its clinical application would allow pathologists to exclude 65–75% of slides while retaining 100% sensitivity. Our results show that this system has the ability to train accurate classification models at unprecedented scale, laying the foundation for the deployment of computational decision support systems in clinical practice.
引用
收藏
页码:1301 / 1309
页数:8
相关论文
共 50 条
  • [1] Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
    Campanella, Gabriele
    Hanna, Matthew G.
    Geneslaw, Luke
    Miraflor, Allen
    Silva, Vitor Werneck Krauss
    Busam, Klaus J.
    Brogi, Edi
    Reuter, Victor E.
    Klimstra, David S.
    Fuchs, Thomas J.
    NATURE MEDICINE, 2019, 25 (08) : 1301 - +
  • [2] Clinical-grade Computational Pathology Using Weakly Supervised Deep Learning on Whole Slide Images
    Barisoni, Laura
    Luo, Xunrong
    TRANSPLANTATION, 2019, 103 (11) : 2213 - 2214
  • [3] Federated learning on whole slide images using weakly supervised computational pathology
    Lu, Ming Yang
    Kong, Dehan
    Lipkova, Jana
    Chen, Richard J.
    Singh, Rajendra
    Chen, Tiffany Y.
    Williamson, Drew F. K.
    Mahmood, Faisal
    CLINICAL CANCER RESEARCH, 2021, 27 (05)
  • [4] Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology
    Laleh, Narmin Ghaffari
    Muti, Hannah Sophie
    Loeffler, Chiara Maria Lavinia
    Echle, Amelie
    Saldanha, Oliver Lester
    Mahmood, Faisal
    Lu, Ming Y.
    Trautwein, Christian
    Langer, Rupert
    Dislich, Bastian
    Buelow, Roman D.
    Grabsch, Heike Irmgard
    Brenner, Hermann
    Chang-Claude, Jenny
    Alwers, Elizabeth
    Brinker, Titus J.
    Khader, Firas
    Truhn, Daniel
    Gaisa, Nadine T.
    Boor, Peter
    Hoffmeister, Michael
    Schulz, Volkmar
    Kather, Jakob Nikolas
    MEDICAL IMAGE ANALYSIS, 2022, 79
  • [5] Clinical-grade endometrial cancer detection system via whole-slide images using deep learning
    Zhang, Xiaobo
    Ba, Wei
    Zhao, Xiaoya
    Wang, Chen
    Li, Qiting
    Zhang, Yinli
    Lu, Shanshan
    Wang, Lang
    Wang, Shuhao
    Song, Zhigang
    Shen, Danhua
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [6] Data-efficient and weakly supervised computational pathology on whole-slide images
    Lu, Ming Y.
    Williamson, Drew F. K.
    Chen, Tiffany Y.
    Chen, Richard J.
    Barbieri, Matteo
    Mahmood, Faisal
    NATURE BIOMEDICAL ENGINEERING, 2021, 5 (06) : 555 - +
  • [7] Data-efficient and weakly supervised computational pathology on whole-slide images
    Ming Y. Lu
    Drew F. K. Williamson
    Tiffany Y. Chen
    Richard J. Chen
    Matteo Barbieri
    Faisal Mahmood
    Nature Biomedical Engineering, 2021, 5 : 555 - 570
  • [8] From whole-slide image to biomarker prediction: end-to-end weakly supervised deep learning in computational pathology
    El Nahhas, Omar S. M.
    van Treeck, Marko
    Woelflein, Georg
    Unger, Michaela
    Ligero, Marta
    Lenz, Tim
    Wagner, Sophia J.
    Hewitt, Katherine J.
    Khader, Firas
    Foersch, Sebastian
    Truhn, Daniel
    Kather, Jakob Nikolas
    NATURE PROTOCOLS, 2024, : 293 - 316
  • [9] Weakly Supervised Segmentation by Tensor Graph Learning for Whole Slide Images
    Zhang, Qinghua
    Chen, Zhao
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT II, 2022, 13432 : 253 - 262
  • [10] A Weakly Supervised Deep Learning Framework for Whole Slide Classification to Facilitate Digital Pathology in Animal Study
    Bussola, Nicole
    Xu, Joshua
    Wu, Leihong
    Gorini, Lorenzo
    Zhang, Yifan
    Furlanello, Cesare
    Tong, Weida
    CHEMICAL RESEARCH IN TOXICOLOGY, 2023, 36 (08) : 1321 - 1331