Dissipativity of Runge-Kutta methods in Hilbert spaces

被引:0
作者
Adrian T. Hill
机构
[1] University of Bath,School of Mathematical Sciences
来源
BIT Numerical Mathematics | 1997年 / 37卷
关键词
65L07; 34D05; Runge-Kutta Methods; nonlinear stability; dissipativity;
D O I
暂无
中图分类号
学科分类号
摘要
This paper concerns the discretization by Runge-Kutta methods of the initial value problemut=f(u), under the dissipative structural condition that there exist α≥0, β>0, such thatf:W→H, ℜe, ∀w∈W, for complex Hilbert spacesW⊆H. It is shown that strong A-stability is necessary to ensure the dissipativity of the method, whilst algebraic stability plus |R(∞)|<1 is a sufficient condition in the case of DJ-irreducible methods.
引用
收藏
页码:37 / 42
页数:5
相关论文
共 8 条
[1]  
Burrage K.(1979)Stability criteria for implicit Runge-Kutta processes SIAM J. Numer. Anal. 16 1095-1113
[2]  
Butcher J. C.(1980)Non-linear stability of a general class of differential equation methods BIT 20 185-203
[3]  
Burrage K.(1975)A stability property of implicit Runge-Kutta methods BIT 15 358-361
[4]  
Butcher J. C.(1978)G-stability is equivalent to A-stability BIT 18 384-401
[5]  
Butcher J. C.(1994)Runge-Kutta methods for dissipative and gradient dynamical systems SIAM J. Numer. Anal. 31 1452-1485
[6]  
Dahlquist G.(undefined)undefined undefined undefined undefined-undefined
[7]  
Humphries A. R.(undefined)undefined undefined undefined undefined-undefined
[8]  
Stuart A. M.(undefined)undefined undefined undefined undefined-undefined