Degree of Approximation by the T.E1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left( {T.\,E^{\,1} } \right) $$\end{document} Means of Conjugate Series of Fourier Series in the Hölder Metric

被引:0
|
作者
Kejal Khatri
Vishnu Narayan Mishra
机构
[1] Sardar Vallabhbhai National Institute of Technology,Applied Mathematics and Humanities Department
[2] L. 1627 Awadh Puri Colony Beniganj,Department of Mathematics
[3] Phase-III,undefined
[4] Opposite-Industrial Training Institute (I.T.I.),undefined
[5] Indira Gandhi National Tribal University,undefined
来源
Iranian Journal of Science and Technology, Transactions A: Science | 2019年 / 43卷 / 4期
关键词
Conjugate series of Fourier series; Degree of approximation; Hölder metric; Matrix summability; Product summability; Primary 40G05; 41A10; 42B05; 42B08;
D O I
10.1007/s40995-017-0272-3
中图分类号
学科分类号
摘要
We extend the results of Singh and Mahajan (Int J Math Math Sci 2008:9, 2008) which in turn generalizes the result of Lal and Yadav (Bull Cal Math Soc 93:191–196, 2001). In this paper, we determine the degree of approximation of functions f~∈Hω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \widetilde{f\,} \in H_{\omega } , $$\end{document} a new Banach space using T.E1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left( {T.\,E^{\,1} } \right) $$\end{document} summability means of conjugate series of Fourier series. Also, some corollaries have also been deduced from our main theorem and particular cases.
引用
收藏
页码:1591 / 1599
页数:8
相关论文
共 17 条