A viscoelastic wave equation with delay and variable exponents: existence and nonexistence

被引:0
作者
Hazal Yüksekkaya
Erhan Pişkin
Jorge Ferreira
Mohammad Shahrouzi
机构
[1] Dicle University,Department of Mathematics
[2] Fluminense Federal University,Department of Mathematics
[3] Jahrom University,Department of Mathematics
来源
Zeitschrift für angewandte Mathematik und Physik | 2022年 / 73卷
关键词
Time delay; Existence; Nonexistence; Variable exponent; Viscoelastic wave equation; 35A01; 35B44; 35L05;
D O I
暂无
中图分类号
学科分类号
摘要
This article deals with the existence and nonexistence of solutions for a viscoelastic wave equation with time delay and variable exponents on the damping and on source term. Firstly, we get the existence of weak solutions by combining the Banach contraction mapping principle and the Faedo–Galerkin method under suitable assumptions on the variable exponents m·\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\left( \cdot \right) $$\end{document} and p·\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\left( \cdot \right) $$\end{document}. For nonincreasing positive function g, we obtain the nonexistence of solutions with negative initial energy in appropriate conditions.
引用
收藏
相关论文
共 51 条
[1]  
Antontsev S(2011)Wave equation with C. R. Mecanique. 339 751-755
[2]  
Antontsev S(2011)-Laplacian and damping term: blow-up of solutions Differ. Equ. Appl. 3 503-525
[3]  
Antontsev S(2021)Wave equation with Electron J. Differ Equ. 6 1-18
[4]  
Ferreira J(1977)-Laplacian and damping term: existence and blow-up Q. J. Math. 28 473-486
[5]  
Pişkin E(2006)Existence and blow up of solutions for a strongly damped Petrovsky equation with variable-exponent nonlinearities Nonlinear Anal. 64 2314-2331
[6]  
Ball J(2020)Remarks on blow-up and nonexistence theorems for nonlinear evolution equations J. Dyn. Control Syst. 26 45-67
[7]  
Berrimi S(2006)Existence and decay of solutions of a viscoelastic equation with a nonlinear source SIAM J. Appl. Math. 66 1383-1406
[8]  
Messaoudi SA(2001)Asymptotic stability for a viscoelastic equation with nonlinear damping and very general type of relaxation functions J. Math. Anal. Appl. 263 749-760
[9]  
Belhannache F(2016)Variable exponent, linear growth functionals in image restoration Comput. Math. Appl. 71 779-804
[10]  
Algharabli MM(1994)Sobolev embedding theorems for spaces J. Differ. Equ. 109 295-308