Semipaired Domination in Claw-Free Cubic Graphs

被引:0
作者
Michael A. Henning
Pawaton Kaemawichanurat
机构
[1] University of Johannesburg,Department of Pure and Applied Mathematics
[2] King Mongkut’s University of Technology Thonburi,Theoretical and Computational Science Center, Science Laboratory Building and Department of Mathematics
来源
Graphs and Combinatorics | 2018年 / 34卷
关键词
Paired-domination; Semipaired domination number; Claw-free; Cubic; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
A subset S of vertices in a graph G is a dominating set if every vertex in V(G)\S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(G) {\setminus } S$$\end{document} is adjacent to a vertex in S. If the graph G has no isolated vertex, then a semipaired dominating set of G is a dominating set of G with the additional property that the set S can be partitioned into two element subsets such that the vertices in each subset are at most distance two apart. The semipaired domination number γpr2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{pr2}(G)$$\end{document} is the minimum cardinality of a semipaired dominating set of G. We show that if G is a claw-free, connected, cubic graph of order n≥10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 10$$\end{document}, then γpr2(G)≤25n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{pr2}(G) \le \frac{2}{5}n$$\end{document}.
引用
收藏
页码:819 / 844
页数:25
相关论文
共 41 条
[1]  
Chudnovsky M(2008)Claw-free graphs. V. global structure J. Combin. Theory Ser. B 98 1373-1410
[2]  
Seymour P(2017)Partitioning the vertices of a cubic graph into two total dominating sets Discrete Appl. Math. 223 52-63
[3]  
Desormeaux WJ(2014)Paired domination in graphs: a survey and recent results Util. Math. 94 101-166
[4]  
Haynes TW(2004)Paired domination in claw-free cubic graphs Graphs Combin. 20 447-456
[5]  
Henning MA(2008)Bounds on total domination in claw-free cubic graphs Discrete Math. 308 3491-3507
[6]  
Desormeaux WJ(1997)Claw-free graphs—a survey Discrete Math. 164 87-147
[7]  
Henning MA(2014)Semitotal domination in graphs Util. Math. 94 67-81
[8]  
Favaron O(2018)Semipaired domination in graphs J. Combin. Math. Comput. Combin. 104 93-109
[9]  
Henning MA(1995)Paired-domination and the paired-domatic-number Congr. Numer. 109 65-72
[10]  
Favaron O(1998)Paired domination in graphs Networks 32 199-206