共 41 条
- [21] Two infinite families of two-weight codes over Z2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{2^m}$$\end{document} Journal of Applied Mathematics and Computing, 2023, 69 (1) : 201 - 218
- [22] Complete classification of (δ+αu2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\delta +\alpha u^2)$$\end{document}-constacyclic codes over F3m[u]/⟨u4⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{3^m}[u]/\langle u^4\rangle $$\end{document} of length 3n Applicable Algebra in Engineering, Communication and Computing, 2018, 29 (1) : 13 - 39
- [23] Parallelisms and translations of (affine) SL(2,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {SL}(2,q)$$\end{document}-unitals Journal of Geometry, 2021, 112 (3)
- [24] A new extension theorem for 3-weight modulo q linear codes over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_q}$$\end{document} Designs, Codes and Cryptography, 2009, 52 (2) : 171 - 183
- [25] Three affine SL(2,8)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{SL}\,}}(2,8)$$\end{document}-unitals Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2023, 64 (2): : 233 - 242
- [26] The linearity of Carlet’s Gray image of linear codes over Z8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{8}$$\end{document} Designs, Codes and Cryptography, 2022, 90 : 2361 - 2373
- [27] On Z2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{2^s}$$\end{document}-linear Hadamard codes: kernel and partial classification Designs, Codes and Cryptography, 2019, 87 (2-3) : 417 - 435
- [28] Reduction for block-transitive t-(k2,k,λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k^2,k,\lambda )$$\end{document} designs Designs, Codes and Cryptography, 2024, 92 (12) : 3877 - 3894
- [29] Partial permutation decoding for binary linear and Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_4$$\end{document}-linear Hadamard codes Designs, Codes and Cryptography, 2018, 86 (3) : 569 - 586
- [30] Good p-ary quasic-cyclic codes from cyclic codes over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F}_p + v\mathbb{F}_p$$\end{document} Journal of Systems Science and Complexity, 2012, 25 (2) : 375 - 384