共 41 条
- [11] The Gray images of (1+u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+u)$$\end{document} constacyclic codes over F2m[u]/⟨uk⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{2^m}[u]/\langle u^{k} \rangle $$\end{document} Journal of Applied Mathematics and Computing, 2015, 49 (1-2) : 433 - 445
- [12] On the equivalence of Zps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{p^s}$$\end{document}-linear generalized Hadamard codes Designs, Codes and Cryptography, 2024, 92 (4) : 999 - 1022
- [13] Infinite families of t-designs from the binomial x4+x3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{4}+x^{3}$$\end{document} over GF(2n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {GF}(2^n)$$\end{document} Applicable Algebra in Engineering, Communication and Computing, 2023, 34 (3) : 411 - 421
- [14] Construction of minimal binary linear codes with dimension n+3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+3$$\end{document} Cryptography and Communications, 2025, 17 (2) : 433 - 452
- [15] On Baer cones in PG(3,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {PG}(3, q)$$\end{document} Journal of Geometry, 2021, 112 (3)
- [16] On the linearity and classification of Zps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{p^s}$$\end{document}-linear generalized hadamard codes Designs, Codes and Cryptography, 2022, 90 (4) : 1037 - 1058
- [17] Optimal quaternary (r,δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r,\delta )$$\end{document}-locally recoverable codes: their structures and complete classification Designs, Codes and Cryptography, 2023, 91 (4) : 1495 - 1526
- [18] Several families of q-ary cyclic codes with length qm-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^m-1$$\end{document} Cryptography and Communications, 2024, 16 (6) : 1357 - 1381
- [19] New quantum codes from self-orthogonal cyclic codes over Fq2[u]/⟨uk⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{q^{2}}[u]/\langle u^k \rangle $$\end{document} Quantum Information Processing, 2021, 20 (9)
- [20] On sets of plane-type (0,mq,2mq)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0, mq, 2mq)_2$$\end{document} in PG(3,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {PG}(3, q)$$\end{document} with a long secant Journal of Geometry, 2020, 111 (3)