On generalized inequalities for nonuniform wavelet frames in L2(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2({\mathbb {K}})$$\end{document}

被引:0
作者
Owais Ahmad
Neyaz A. Sheikh
Abid Ayub Hazari
机构
[1] National Institute of Technology,Department of Mathematics
[2] University of Kashmir,Department of Mathematics
关键词
Frame; Nonuniform wavelet frame; Local field; Fourier transform; 42C40; 42C15; 43A70; 11S85;
D O I
10.1007/s13370-021-00945-y
中图分类号
学科分类号
摘要
Wavelet frames are different from the orthonormal wavelets because of redundancy. By sacrificing orthonormality and allowing redundancy, wavelet frames become much easier to construct than the orthonormal wavelets. An important problem in practice is therefore to determine conditions on the wavelet function, dilation and translation parameters so that the corresponding wavelet system forms a frame. In this paper, we establish some inequalities for nonuniform wavelet system to be frame in L2(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2({\mathbb {K}})$$\end{document}. Our results are improved than the known ones by Bhat (Int J Wavelets Multiresol Inf Process 16(1):1850005, 2018) and Li and Jiang (J Math Anal Appl 345:500–510, 2008).
引用
收藏
相关论文
共 87 条
[1]  
Ahmad O(2020)Construction of nonuniform wavelet frames on non-Archimedea n fields Math. Phy. Anal. Geometry 23 1-17
[2]  
Ahmad N(2021)Construction of Parseval framelets associated with GMRA on local fields of positive characteristic Num. Funct. Anal. Optim. 2 1-149
[3]  
Ahmad O(2020)Nonuniform periodic wavelet frames on non-archimedean fields Ann. Univ. Mariae Curie-Sklodowska Sect. A Math. 15 131-67
[4]  
Bhat MY(2021)Explicit construction of tight nonuniform framelet packets on local fields Oper. Matrices 11 51-146
[5]  
Sheikh NA(2018)Nonuniform wavelet frames on local fields Jordan J. Math. Stat. 34 135-714
[6]  
Ahmad O(2020)Nonuniform nonhomogeneous dual wavelet frames in Sobolev spaces in Afrika Math. 15 17-189
[7]  
Ahmad O(2018)On characterization of nonuniform tight wavelet frames on local fields Anal. Theory Appl. 16 693-202
[8]  
Ahmad N(2018)Gabor frames on non-Archimedean fields Int. J. Geol. Meth. Mod. Phys. 1 181-53
[9]  
Ahmad O(2010)p-adic multiresolution analysis and wavelet frames J. Fourier Anal. Appl. 3 181-456
[10]  
Sheikh NA(2009)Multidimensional basis of p-adic wavelets and representation theory, p-Adic numbers Ultrametric Anal Appl. 66 33-320