A local regularity of the complex Monge–Ampère equation

被引:0
|
作者
Zbigniew Błocki
Sławomir Dinew
机构
[1] Jagiellonian University,Institute of Mathematics
来源
Mathematische Annalen | 2011年 / 351卷
关键词
Dirichlet Problem; Convex Domain; Nonlinear Elliptic Equation; Einstein Metrics; Elliptic Quasilinear Equation;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a local regularity (and a corresponding a priori estimate) for plurisubharmonic solutions of the nondegenerate complex Monge–Ampère equation assuming that their W2, p-norm is under control for some p > n(n − 1). This condition is optimal. We use in particular some methods developed by Trudinger and an estimate for the complex Monge–Ampère equation due to Kołodziej.
引用
收藏
页码:411 / 416
页数:5
相关论文
共 50 条
  • [1] A local regularity of the complex Monge-Ampere equation
    Blocki, Zbigniew
    Dinew, Slawomir
    MATHEMATISCHE ANNALEN, 2011, 351 (02) : 411 - 416
  • [2] The global dirichlet problem for the complex Monge-Ampère equation
    Urban Cegrell
    Sławomir Kołodziej
    The Journal of Geometric Analysis, 1999, 9 (1): : 41 - 49
  • [3] Harmonic discs of solutions to the complex homogeneous Monge-Ampère equation
    Julius Ross
    David Witt Nyström
    Publications mathématiques de l'IHÉS, 2015, 122 : 315 - 335
  • [4] A Remark on the Continuous Subsolution Problem for the Complex Monge-Ampère Equation
    Sławomir Kołodziej
    Ngoc Cuong Nguyen
    Acta Mathematica Vietnamica, 2020, 45 : 83 - 91
  • [5] Degenerate Monge-Ampère equation on complex varieties in bounded domains of Cn
    Alehyane, Omar
    Amal, Hichame
    El Gasmi, Ayoub
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 542 (01)
  • [6] Global regularity for a class of Monge-Ampère type equations
    Mengni Li
    You Li
    Science China Mathematics, 2022, 65 : 501 - 516
  • [7] On the existence and regularity of Dirichlet problem for complex Monge-Ampére equationson weakly pseudoconvex domains
    Song-Ying Li
    Calculus of Variations and Partial Differential Equations, 2004, 20 : 119 - 132
  • [8] The Eigenvalue Problem for the Complex Monge–Ampère Operator
    Papa Badiane
    Ahmed Zeriahi
    The Journal of Geometric Analysis, 2023, 33
  • [9] A singular Monge-Ampère equation on unbounded domains
    Huaiyu Jian
    You Li
    ScienceChina(Mathematics), 2018, 61 (08) : 1473 - 1480
  • [10] REGULARITY OF WEAK SOLUTIONS OF A COMPLEX MONGE-AMPERE EQUATION
    Szekelyhidi, Gabor
    Tosatti, Valentino
    ANALYSIS & PDE, 2011, 4 (03): : 369 - 378